首页> 外文期刊>Applied Physics Letters >Plasmon gap mode-assisted third-harmonic generation from metal film-coupled nanowires
【24h】

Plasmon gap mode-assisted third-harmonic generation from metal film-coupled nanowires

机译:金属膜耦合纳米线的等离子隙模式辅助三次谐波生成

获取原文
获取原文并翻译 | 示例
       

摘要

A numerical investigation on the third-order nonlinear optical properties of a plasmonic system composed by metal film-coupled nanowires is reported. The linear and nonlinear optical characteristics are studied by finite-difference time-domain (FDTD) method. To substantially improve the nonlinear effect, the geometric parameters of the system are carefully engineered to excite strong plasmon gap resonance with dramatically enhanced electric field intensity at the gap between the nanowires and the film. The third-harmonic generation (THG) property is examined by nonlinear FDTD simulation. It shows that the THG efficiency estimated from the nonlinear optical absorption can be ~1 × 10~(-5) under an incident power density of 5.2GW/cm~2. Plasmonic resonance is necessary to achieve highly efficient THG since the system on resonance shows the THG intensity 4 orders of magnitude higher than that of an off-resonance system.
机译:报道了由金属膜耦合纳米线组成的等离子体系统的三阶非线性光学性质的数值研究。通过时域有限差分法(FDTD)研究了线性和非线性光学特性。为了显着改善非线性效应,系统的几何参数经过精心设计以激发强烈的等离激元间隙共振,并在纳米线和薄膜之间的间隙处显着增强了电场强度。通过非线性FDTD仿真检查了三次谐波生成(THG)特性。结果表明,在入射功率密度为5.2GW / cm〜2的条件下,利用非线性光吸收法估算的THG效率约为〜1×10〜(-5)。等离子体共振是实现高效THG所必需的,因为共振系统显示的THG强度比非共振系统高4个数量级。

著录项

  • 来源
    《Applied Physics Letters》 |2014年第26期|261105.1-261105.5|共5页
  • 作者单位

    College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China,Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China;

    College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China,Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China;

    Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China,Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;

    College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China,Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China;

    College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China,Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:15:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号