首页> 外文期刊>Applied Physics Letters >Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO_3-buffered ferroelectric BaTiO_3 film on GaAs
【24h】

Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO_3-buffered ferroelectric BaTiO_3 film on GaAs

机译:在GaAs上SrTiO_3缓冲的铁电BaTiO_3薄膜中氧空位增强极化的直接观察

获取原文
获取原文并翻译 | 示例
           

摘要

The integration of functional oxide thin-films on compound semiconductors can lead to a class of reconfigurable spin-based optoelectronic devices if defect-free, fully reversible active layers are stabilized. However, previous first-principles calculations predicted that SrTiO_3 thin films grown on Si exhibit pinned ferroelectric behavior that is not switchable, due to the presence of interfacial vacancies. Meanwhile, piezoresponse force microscopy measurements have demonstrated ferroelectricity in BaTiO_3 grown on semiconductor substrates. The presence of interfacial oxygen vacancies in such complex-oxide/semiconductor systems remains unexplored, and their effect on ferroelectricity is controversial. Here, we use a combination of aberration-corrected scanning transmission electron microscopy and first-principles density functional theory modeling to examine the role of interfacial oxygen vacancies on the ferroelectric polarization of a BaTiO_3 thin film grown on GaAs. We demonstrate that interfacial oxygen vacancies enhance the polar discontinuity (and thus the single domain, out-of-plane polarization pinning in BaTiO_3), and propose that the presence of surface charge screening allows the formation of switchable domains.
机译:如果稳定无缺陷,完全可逆的有源层,则化合物半导体上功能性氧化物薄膜的集成会导致一类可重构的基于自旋的光电器件。然而,先前的第一性原理计算预测,由于存在界面空位,在Si上生长的SrTiO_3薄膜呈现出不可切换的固定铁电行为。同时,压电响应力显微镜测量已证明在半导体衬底上生长的BaTiO_3中具有铁电性。在这种复合氧化物/半导体系统中,界面氧空位的存在尚待探索,并且它们对铁电的影响是有争议的。在这里,我们结合使用像差校正的扫描透射电子显微镜和第一原理密度泛函理论模型,以检查界面氧空位对在GaAs上生长的BaTiO_3薄膜的铁电极化的作用。我们证明界面氧空位增强了极性不连续性(并因此增强了BaTiO_3中的单畴,平面外极化固定),并提出表面电荷筛选的存在允许形成可切换的畴。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第20期|201604.1-201604.5|共5页
  • 作者单位

    Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA ,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240, USA ,Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ,Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA;

    Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240, USA ,Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;

    Ingram School of Engineering, Texas State University, San Marcos, Texas 78666, USA;

    Ingram School of Engineering, Texas State University, San Marcos, Texas 78666, USA;

    Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240, USA ,Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37240, USA;

    Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore;

    Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA;

    Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号