首页> 外文期刊>Applied Physics Letters >Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy
【24h】

Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy

机译:纳米沉淀强化Ni-Ti形状记忆合金在不同变形阶段的应力传递

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni_4Ti_3 precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ~520MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. It is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.
机译:迄今为止,仍然不清楚,了解精细的相干析出物在强化析出物的形状记忆合金(SMA)的微观力学行为中的作用,对于设计具有最佳功能和机械性能的先进SMA至关重要。在这里,我们通过原位同步加速器高能X射线衍射技术研究了在不同变形阶段不同析出物强度的Ni-Ti SMA中纳米尺度Ni_4Ti_3析出物与基体之间的晶格应变演化以及应力分配。我们发现,在都涉及剪切变形过程的R相再取向和应力诱发的马氏体转变过程中,纳米级析出物的晶格应变急剧增加了0.5%,这对应于520 MPa的突然增加。内部压力。这表明在基体的剪切变形过程中发生了应力重新分配,并且大部分应力转移到了析出物上。进一步揭示,仅具有低体积分数的纳米级沉淀物在所研究的所有变形阶段中承受相当大的施加应力,这意味着纳米级沉淀物在沉淀物强化的Ni-Ti SMAs的变形行为中起着重要作用。 。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第20期|201901.1-201901.5|共5页
  • 作者单位

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30 Xueyuan Rd., Haidian District, Beijing 100083, People's Republic of China;

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30 Xueyuan Rd., Haidian District, Beijing 100083, People's Republic of China;

    School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China;

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30 Xueyuan Rd., Haidian District, Beijing 100083, People's Republic of China;

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30 Xueyuan Rd., Haidian District, Beijing 100083, People's Republic of China;

    School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China;

    X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30 Xueyuan Rd., Haidian District, Beijing 100083, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号