首页> 外文期刊>Applied Physics Letters >Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers
【24h】

Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

机译:二维过渡金属二卤化硅单分子层的快速全光学晶体取向成像

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ± 1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques.
机译:二维(2D)原子材料,例如石墨烯和过渡金属二卤化物(TMDC),因其电子,光学,机械和热学性质而引起了广泛的研究和工业兴趣。虽然已经证明了诸如化学气相沉积的大面积晶体生长技术,但是在这种生长中出现的晶界和晶粒取向的存在实质上影响了材料的物理性质。当前没有可扩展的表征方法来确定大样本区域上的这些边界和方向。我们在这里提出了一种基于二次谐波产生的显微镜技术,用于快速绘制二维TMDCs的晶粒取向和边界。我们通过实验证明了将大型样品映射到±1°的角分辨率的能力,而所需的样品制备最少,并且无需进行分析。提供了全光学晶粒取向图与在相同TMDC样品上通过衍射滤光暗场透射电子显微镜加上选择区域电子衍射获得的结果的直接比较。这种快速,准确的工具应能对TMDC样品进行大面积表征,以加快对晶界效应的研究,并有效表征工业规模生产技术。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第11期|111902.1-111902.4|共4页
  • 作者单位

    Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA;

    Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA;

    Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA,Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA;

    NSF Nanoscale Science and Engineering Center (NSEC), University of California, Berkeley 3112 EtcheverryHall, UC Berkeley, California 94720, USA;

    Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA;

    Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA;

    Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA;

    NSF Nanoscale Science and Engineering Center (NSEC), University of California, Berkeley 3112 EtcheverryHall, UC Berkeley, California 94720, USA,Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia,Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA;

    Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA,Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号