首页> 外文期刊>Applied Physics Letters >Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals
【24h】

Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals

机译:通过Fano共振光子晶体增强二维材料的吸收

获取原文
获取原文并翻译 | 示例
       

摘要

The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS_2 and graphene absorb only ~10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ~0.2 μm adjacent to the graphene/electrode interface.
机译:由于其令人着迷的光学和电学特性,在光电学中使用二维(2D)材料已引起了广泛的关注。但是,由于2D材料的原子厚度引起的低光吸收限制了最大可获得的外部量子效率。例如,在可见光和近红外条件下,单层MoS_2和石墨烯分别仅吸收约10%和2.3%的入射光。在这里,我们通过实验证明了使用Fano共振光子晶体来显着提高原子薄材料的吸收。使用石墨烯作为测试床,我们证明了在电信频段内单层厚材料中的吸收可以提高到77%,这是迄今为止报道的最高值。我们还显示,在Fano共振结构中的吸收是非局部的,光在该结构中传播高达16μm。在基于场效应晶体管的石墨烯光电探测器中从大面积收集光时,此特性特别有利,在该探测器中,光生载流子的分离仅在石墨烯/电极界面附近发生〜0.2μm。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第18期|181104.1-181104.5|共5页
  • 作者单位

    Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37212, USA;

    Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240, USA;

    Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37212, USA;

    Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, USA;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;

    Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240, USA;

    Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:15:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号