首页> 外文期刊>Applied Physics Letters >Localized conductive patterning via focused electron beam reduction of graphene oxide
【24h】

Localized conductive patterning via focused electron beam reduction of graphene oxide

机译:通过聚焦电子束还原氧化石墨烯进行局部导电图形化

获取原文
获取原文并翻译 | 示例
       

摘要

We report on a method for "direct-write" conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.
机译:我们报告了一种通过使用碳的聚焦电子束诱导沉积(FEBID)还原氧化石墨烯(GO)薄片来“直接写入”导电图案的方法。在两个金属端子之间进行本征介电氧化石墨烯的FEBID处理可打开导电通道,从而为GO中的纳米级导电域构图提供了独特的功能。 FEBID电子剂量的增加会导致畴电导率的显着增加,同时漏极-源极电流与电压的相关性也将得到改善,这表明氧化石墨烯的电子性质从绝缘变为半导体。密度泛函理论计算提出了这种实验观察到的现象的潜在机制,这是由于氧化石墨烯层通过与电子束辅助的表面吸附的烃分子解离的高反应性中间体相互作用而局部还原。这些发现为将FEBID用作纳米平版印刷和图案化技术以工程化具有本地定制电子特性的碳基纳米材料和器件建立了一条不寻常的途径。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第13期|133109.1-133109.5|共5页
  • 作者单位

    George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:15:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号