...
首页> 外文期刊>Applied Physics Letters >Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots
【24h】

Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots

机译:具有量子点的掺Ge的InGaO薄膜晶体管的光电流增强

获取原文
获取原文并翻译 | 示例

摘要

The photocurrent of germanium-doped indium-gallium oxide (GIGO) thin film transistors (TFTs) can be observed when the device is exposed to a ultra-violet light because GIGO is a wide band gap semiconducting material. Therefore, we decorated cadmium selenide (CdSe) quantum-dots (QDs) on the surface of GIGO to increase the photocurrent for low-energy light, i.e., visible light. A 10nm GIGO film was deposited on the SiO_2/Si substrate by a radio frequency sputter system. Also, we prepared CdSe QDs with sizes of ~6.3 nm, which can absorb red visible light. QDs were spin-coated onto the GIGO film, and post-annealing was done to provide cross-linking between QDs. The prepared devices showed a 231% increase in photocurrent when exposed to 650 nm light due to the QDs on the GIGO surface. Measurements to construct an energy level diagram were made using ultraviolet photoelectron spectroscopy to determine the origin of the photocurrent, and we found that the small band gap of CdSe QDs enables the increase in photocurrent in the GIGO TFTs. This result is relevant for developing highly transparent photosensors based on oxide semiconductors and QDs.
机译:当器件暴露于紫外线下时,可以观察到掺锗铟镓铝氧化物(GIGO)薄膜晶体管(TFT)的光电流,因为GIGO是宽带隙半导体材料。因此,我们在GIGO的表面上装饰了硒化镉(CdSe)量子点(QDs),以增加低能量光(即可见光)的光电流。通过射频溅射系统在SiO_2 / Si衬底上沉积10nm的GIGO膜。此外,我们制备了尺寸约为6.3 nm的CdSe量子点,可以吸收红色可见光。将QD旋涂到GIGO薄膜上,并进行后退火以提供QD之间的交联。由于GIGO表面上的QD,当暴露于650 nm光下时,准备好的器件显示出光电流增加231%。使用紫外光电子能谱法进行了测量,以构建能级图,以确定光电流的起源,并且我们发现CdSe QD的小带隙使得GIGO TFT中的光电流增加。此结果对于开发基于氧化物半导体和QD的高度透明的光电传感器非常重要。

著录项

  • 来源
    《Applied Physics Letters 》 |2015年第3期| 031112.1-031112.5| 共5页
  • 作者单位

    Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, South Korea;

    Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, South Korea;

    Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 133-719, South Korea;

    Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 133-719, South Korea;

    Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea;

    Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea;

    Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号