首页> 外文期刊>Applied Physics Letters >Insights into electrode/electrolyte interfacial processes and the effect of nanostructured cobalt oxides loading on graphene-based hybrids by scanning electrochemical microscopy
【24h】

Insights into electrode/electrolyte interfacial processes and the effect of nanostructured cobalt oxides loading on graphene-based hybrids by scanning electrochemical microscopy

机译:通过扫描电化学显微镜深入了解电极/电解质界面过程以及纳米结构钴氧化物负载量对石墨烯基杂化物的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Nanostructured cobalt oxide polymorphs (CoO and Co_3O_4) deposited via electrodeposition allowed optimal loading on supercapacitive graphene nanosheets producing a set of graphene-based hybrids namely, CoO/GO, CoO/ErGO, Co_3O_4/GO, Co_3O_4/rGO, and Co_3O_4/ErGO, as pseudocapacitive electrochemical electrodes. We gained fundamental insights into the complex physicochemical interfacial processes at electrode surfaces and electrode/electrolyte (or solid/liquid) interfaces by scanning electrochemical microscopy operating in the feedback probe approach and imaging modes while monitoring and mapping the redox probe (re)activity behavior. We determined the various experimental descriptors including diffusion coefficient, electron transfer rate, and electro-active site distribution on electrodes. We emphasize the interplay of (1) heterogeneous basal and edge plane active sites, (2) graphene surface functional moieties (conducting/semiconducting), and (3) crystalline spinel cobalt oxides (semiconducting/insulating) coated graphene, reinforcing the available electron density of states in the vicinity of the Fermi level contributing to higher elec-troactivity, faster interfacial diffusion, and shorter distances for electron transfer, facilitated through molecular and chemical bridges obtained by electrodeposition as compared with the physical deposition.
机译:通过电沉积沉积的纳米结构钴氧化物多晶型物(CoO和Co_3O_4)允许在超电容石墨烯纳米片上进行最佳负载,从而产生一组基于石墨烯的杂化体,即CoO / GO,CoO / ErGO,Co_3O_4 / GO,Co_3O_4 / rGO和Co_3O_4 / ErGO,作为伪电容电化学电极。通过在反馈探针方法和成像模式下运行扫描电化学显微镜,同时监测和绘制氧化还原探针(反应性)行为,我们对电极表面和电极/电解质(或固体/液体)界面的复杂物理化学界面过程有了基本的了解。我们确定了各种实验指标,包括扩散系数,电子传输速率和电极上的电活性位点分布。我们强调(1)异质基底和边缘平面活性位点,(2)石墨烯表面功能部分(导电/半导体)和(3)结晶尖晶石钴氧化物(半导体/绝缘)涂层石墨烯之间的相互作用,从而增强了可用电子密度与物理沉积相比,通过电沉积获得的分子桥和化学桥促进了费米能级附近状态的变化,从而有助于更高的电活性,更快的界面扩散和更短的电子转移距离。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第24期|243903.1-243903.5|共5页
  • 作者

    Sanju Gupta; Sara B. Carrizosa;

  • 作者单位

    Department of Physics and Astronomy and Advanced Materials Institute, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky 42101, USA;

    Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky 42101, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号