首页> 外文期刊>Applied Physics Letters >High-efficiency AIGaInP solar cells grown by molecular beam epitaxy
【24h】

High-efficiency AIGaInP solar cells grown by molecular beam epitaxy

机译:通过分子束外延生长的高效AIGaInP太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

AIGaInP is an ideal material for ultra-high efficiency, lattice-matched multi-junction solar cells grown by molecular beam epitaxy (MBE) because it can be grown lattice-matched to GaAs with a wide 1.9-2.2 eV bandgap. Despite this potential, AIGaInP grown by molecular beam epitaxy (MBE) has yet to be fully explored, with the initial 2.0 eV devices suffering from poor performance due to low minority carrier diffusion lengths in both the emitter and base regions of the solar cell. In this work, we show that implementing an AIGaInP graded layer to introduce a drift field near the front surface of the device enabled greatly improved internal quantum efficiency (IQE) across all wavelengths. In addition, optimizing growth conditions and post-growth annealing improved the long-wavelength IQE and the open-circuit voltage of the cells, corresponding to a 3 × increase in diffusion length in the base. Taken together, this work demonstrates greatly improved IQE, attaining peak values of 95%, combined with an uncoated AM1.5G efficiency of 10.9%, double that of previously reported MBE-grown devices.
机译:AIGaInP是通过分子束外延(MBE)生长的超高效,晶格匹配的多结太阳能电池的理想材料,因为它可以与1.9-2.2 eV的带隙宽的GaAs晶格匹配。尽管有这种潜力,但通过分子束外延(MBE)生长的AIGaInP尚待充分研究,最初的2.0 eV器件由于在太阳能电池的发射极和基极区域中少数载流子扩散长度短而性能较差。在这项工作中,我们表明,实现AIGaInP渐变层以在设备前表面附近引入漂移场,可以大大提高所有波长的内部量子效率(IQE)。另外,优化生长条件和生长后退火改善了长波长IQE和电池的开路电压,这对应于基极中扩散长度的3倍增加。综上所述,这项工作证明了IQE大大提高,达到了95%的峰值,加上未涂层的AM1.5G效率为10.9%,是以前报道的MBE器件的两倍。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第17期|172105.1-172105.4|共4页
  • 作者单位

    Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA;

    Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA;

    Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA;

    Area de Tecnologia Electronica, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain;

    Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA;

    Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号