首页> 外文期刊>Applied Physics Letters >Enhancement of magnetic moment in Zn_xFe_(3-x)O_4 thin films with dilute Zn substitution
【24h】

Enhancement of magnetic moment in Zn_xFe_(3-x)O_4 thin films with dilute Zn substitution

机译:稀锌取代对Zn_xFe_(3-x)O_4薄膜磁矩的增强

获取原文
获取原文并翻译 | 示例
       

摘要

Highly (111)-textured Zn_xFe_(3-x)O_4 thin films were grown by pulsed laser deposition on silicon substrates. The spin and orbital magnetic moments of the Zn_xFe_(3-x)O_4 thin films have been obtained by X-ray magnetic circular dichroism (XMCD) and sum rule analysis. The total magnetic moments thus extracted are in good agreement with the values obtained by vibrating sample magnetometer. Both the unquenched orbital moment and the ratio of orbital-to-spin moment first increase significantly with increasing Zn substitution at a low concentration range (0 ≤ x ≤ 0.1), and then decrease at a higher concentration (x = 0.3). The underlying site-specific doping mechanisms involved here have been elucidated by detailed analysis of the XMCD of Zn_xFe_(3-x)O_4 films. Our work demonstrates a practical means to manipulate the spin-orbit coupling in the Zn_xFe_(3-x)O_4 thin films via Zn impurity doping.
机译:通过脉冲激光沉积在硅衬底上生长高度(111)纹理的Zn_xFe_(3-x)O_4薄膜。 Zn_xFe_(3-x)O_4薄膜的自旋和轨道磁矩已经通过X射线磁圆二色性(XMCD)和求和规则分析获得。如此提取的总磁矩与通过振动样品磁力计获得的值高度吻合。在低浓度范围(0≤x≤0.1)下,随着Zn取代量的增加,未淬灭的轨道力矩和自旋力矩比都首先显着增加,然后在较高的浓度下(x = 0.3)降低。通过对Zn_xFe_(3-x)O_4薄膜的XMCD进行详细分析,可以阐明此处涉及的特定于位点的潜在掺杂机制。我们的工作证明了一种通过掺杂锌杂质来控制Zn_xFe_(3-x)O_4薄膜中自旋轨道耦合的实用手段。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第23期|232403.1-232403.5|共5页
  • 作者单位

    Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China,National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China;

    Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China;

    Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China;

    Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China;

    NanoElectronics Group, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands;

    Irvine Materials Research Institute, University of California, Irvine, California 92697-2800, USA;

    Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China;

    Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China;

    Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China,National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China;

    Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China;

    National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China;

    National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号