首页> 外文期刊>Applied Physics Letters >Tuning the photovoltaic effect of multiferroic CoFe_2O_4/Pb(Zr, Ti)O_3 composite films by magnetic fields
【24h】

Tuning the photovoltaic effect of multiferroic CoFe_2O_4/Pb(Zr, Ti)O_3 composite films by magnetic fields

机译:磁场调节多铁性CoFe_2O_4 / Pb(Zr,Ti)O_3复合薄膜的光伏效应

获取原文
获取原文并翻译 | 示例
       

摘要

The 0-3 type CoFe_2O_4/Pb(Zr, Ti)O_3 (CFO-PZT) multiferroic composite films have been prepared by a sol-gel process and spin-coating technique. A confirmable photovoltaic effect is observed under ultraviolet light irradiation. Moreover, this photovoltaic effect can be tuned by external magnetic fields. The maximum magnetic modulation ratios of short-circuit current density and open-circuit voltage can reach as high as 13.7% and 12.8% upon the application of 6 kOe DC magnetic field. Through remnant polarization measurements under various magnetic fields and detailed analysis of the energy band structures, we elucidate the mechanism of tuning photovoltaic effect by magnetic fields and attribute it to the combination of two factors. One is the decreased ferroelectric-polarization-induced depolarization electric field and another is the band structure reconstruction at CFO-PZT interfaces, both of which are dominated by the magnetoelectric coupling via interfacial stress transferring at nanoscale. This work makes some attempts of coupling photo-induced effects with magnetoelectric effect in multiferroic materials and will widen the practical ranges of multiferroic-based applications.
机译:通过溶胶-凝胶法和旋涂技术制备了0-3型CoFe_2O_4 / Pb(Zr,Ti)O_3(CFO-PZT)多铁复合膜。在紫外线照射下观察到可确认的光伏效应。而且,这种光伏效应可以通过外部磁场来调节。施加6 kOe DC磁场时,短路电流密度和开路电压的最大磁调制比可以分别达到13.7%和12.8%。通过在各种磁场下的剩余极化测量以及能带结构的详细分析,我们阐明了通过磁场调节光伏效应的机理,并将其归因于两个因素的结合。一个是减少的铁电极化引起的去极化电场,另一个是在CFO-PZT界面处的能带结构重建,这两者都由经由纳米级界面应力传递的磁电耦合控制。这项工作进行了一些尝试,以在多铁性材料中将光感应效应与磁电效应耦合,并将拓宽基于多铁性材料的实际应用范围。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第22期|222902.1-222902.5|共5页
  • 作者单位

    National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;

    National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;

    National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;

    Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA;

    National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;

    National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;

    National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号