首页> 外文期刊>Applied Physics Letters >Carbon nanotube fiber terahertz polarizer
【24h】

Carbon nanotube fiber terahertz polarizer

机译:碳纳米管光纤太赫兹偏振器

获取原文
获取原文并翻译 | 示例
       

摘要

Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ~-30 dB with a low insertion loss (<0.5dB) throughout a frequency range of 0.2-1.1 THz. In addition, we used a THz ellipsometer to measure the Mueller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.
机译:常规的市售太赫兹(THz)偏振器由均匀且精确间隔的金属线制成。它们易碎且昂贵,其性能特征高度依赖于导线的直径和间距。在这里,我们报告一种简单且高度容错的方法,该方法用于制造具有接近理想性能的独立式太赫兹偏振器,这取决于在排列良好的碳纳米管(CNT)中导电电子的固有一维特征。偏振器构建在机械框架上,在该机械框架上我们手动缠绕具有超高电导率的酸掺杂CNT纤维。我们证明了该偏振片的消光比约为-30 dB,并且在0.2-1.1 THz的整个频率范围内具有较低的插入损耗(<0.5dB)。此外,我们使用了太赫兹椭圆偏振仪来测量CNT光纤偏振器的Mueller矩阵,发现衰减与商用金属线栅偏振器相当。此外,基于经典的通过金属线阵列的光传输理论,我们证明了CNT纤维和金属线栅偏振器之间的最显着差异:后者在零间距极限下无法发挥作用作为简单的反射镜,尽管由于单个CNT的一维电导率,前者仍然可以用作出色的偏振器。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第14期|141107.1-141107.4|共4页
  • 作者单位

    Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA;

    Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA;

    Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA;

    Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898, USA;

    Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA,Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898, USA;

    Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA,Department of Chemistry, Rice University, Houston, Texas 77005, USA,Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA;

    Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA,Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA,Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号