首页> 外文期刊>Applied Physics Letters >Conduction mechanism change with transport oxide layer thickness in oxide hetero-interface diode
【24h】

Conduction mechanism change with transport oxide layer thickness in oxide hetero-interface diode

机译:氧化物异质界面二极管中导电机理随传输氧化物层厚度的变化而变化

获取原文
获取原文并翻译 | 示例
       

摘要

An effective and facile strategy is proposed to demonstrate an engineered oxide hetero-interface of a thin film diode with a high current density and low operating voltage. The electrical characteristics of an oxide hetero-interface thin film diode are governed by two theoretical models: the space charge-limited current model and the Fowler-Nordheim (F-N) tunneling model. Interestingly, the dominant mechanism strongly depends on the insulator thickness, and the mechanism change occurs at a critical thickness. This paper shows that conduction mechanisms of oxide hetero-interface thin film diodes depend on thicknesses of transport oxide layers and that current densities of these can be exponentially increased through quantum tunneling in the diodes with the thicknesses less than 10 nm. These oxide hetero-interface diodes have great potential for low-powered transparent nanoscale applications.
机译:提出了一种有效且简便的策略,以证明具有高电流密度和低工作电压的薄膜二极管的工程氧化物异质界面。氧化物异质界面薄膜二极管的电学特性受两个理论模型支配:空间电荷限制电流模型和Fowler-Nordheim(F-N)隧穿模型。有趣的是,主导机制在很大程度上取决于绝缘子的厚度,并且机制的改变发生在临界厚度处。本文表明,氧化物异质界面薄膜二极管的导电机制取决于传输氧化物层的厚度,并且通过在厚度小于10 nm的二极管中进行量子隧穿,可以以指数方式增加其电流密度。这些氧化物异质界面二极管在低功率透明纳米级应用中具有巨大潜力。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第5期|053506.1-053506.5|共5页
  • 作者单位

    Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea;

    School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea,Innovation Center for Chemical Engineering, Incheon National University, Incheon, South Korea;

    Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea;

    Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea;

    Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea;

    Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea;

    Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea;

    Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea;

    Innovation Center for Chemical Engineering, Incheon National University, Incheon, South Korea,Department of Materials Science and Engineering, Incheon National University, Incheon, South Korea;

    Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea,Advanced Institute of Convergence Technology, Gyeonggi-do, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号