首页> 外文期刊>Applied Physics Letters >Quantitative assessment of acoustic pressure in one-dimensional acoustofluidic devices driven by standing surface acoustic waves
【24h】

Quantitative assessment of acoustic pressure in one-dimensional acoustofluidic devices driven by standing surface acoustic waves

机译:驻表面声波驱动的一维声流装置中声压的定量评估

获取原文
获取原文并翻译 | 示例
           

摘要

Acoustofluidic devices based on standing surface acoustic waves (SSAWs) have shown great potential in the manipulation of particles and cells. However, characterizing the acoustic field in a microchannel is difficult. This work introduces an analytical acoustophoretic model that shows that, by identifying the time period of particle rearrangement and the width of the eventually formed "particle strip," acoustic pressure amplitude in a one-dimensional (1D) SSAW-actuated microchamber could be estimated quantitatively. Experiments are carried out with the help of a micro-PIV (PIV: particle image velocimetry) system, the results of which show that in-channel acoustic pressure is proportional to the square of voltage and the duty factor of an applied pulsed signal. This work links external excitation with acoustic pressure via only one parameter, i.e., the electroacoustic scaling factor. The method is simple and effective enough to serve as a candidate for standardizing 1D SSAW-based acoustofluidic devices.
机译:基于驻表面声波(SSAW)的声流体装置在操纵粒子和细胞方面显示出巨大潜力。但是,表征微通道中的声场是困难的。这项工作引入了一个分析型声电泳模型,该模型表明,通过识别粒子重排的时间段和最终形成的“粒子带”的宽度,可以定量估算一维(1D)SSAW驱动微腔中的声压振幅。 。实验是借助微型PIV(PIV:粒子图像测速)系统进行的,结果表明,通道内声压与电压的平方和所施加脉冲信号的占空比成正比。这项工作仅通过一个参数即电声比例因子将外部激励与声压联系起来。该方法简单有效,足以用作标准化基于1D SSAW的声流体设备的候选方法。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第4期|043508.1-043508.5|共5页
  • 作者单位

    Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China;

    Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China;

    Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China;

    Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China;

    Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China;

    Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China;

    Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China,The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号