首页> 外文期刊>Applied Physics Letters >Enhanced THz emission efficiency of composition-tunable InGaAs nanowire arrays
【24h】

Enhanced THz emission efficiency of composition-tunable InGaAs nanowire arrays

机译:组成可调的InGaAs纳米线阵列的增强的THz发射效率

获取原文
获取原文并翻译 | 示例
       

摘要

We report the terahertz (THz) emission properties of composition-tunable, intrinsically n-type InGaAs nanowire (NW) arrays using THz time-domain spectroscopy. By tuning the alloy composition of In_(1-x)Ga_xAs NWs from pure InAs (x(Ga)=0) up to the intermediate composition (x(Ga)~0.5), a substantially enhanced (>3-fold) THz emission efficiency is found, which is ascribed to a reduction in electron accumulation at the NW surface and respective electron scattering at donor-type surface defects. These findings are also confirmed by photoexcitation wavelength dependent measurements, while the THz emission characteristics are further found to be different from corresponding bulk-type planar InGaAs. In particular, NWs exhibit no distinct maxima in THz excitation spectra as caused by electron scattering to subsidiary conduction band valleys and commonly observed in the majority of bulk semiconductors. The wavelength-dependent emission spectra further reveal distinct signatures of modified intervalley scattering, revealing the underlying polytypism of intermixed wurtzite and zincblende phases in the investigated InGaAs NWs.
机译:我们报告了太赫兹(THz)发射特性的组成可调,本质上是n型InGaAs纳米线(NW)阵列使用THz时域光谱。通过将In_(1-x)Ga_xAs NWs的合金成分从纯InAs(x(Ga)= 0)调整到中间成分(x(Ga)〜0.5),可以显着提高(> 3倍)THz发射发现效率,这归因于在NW表面上电子积累的减少以及在施主型表面缺陷处相应的电子散射。这些发现也通过光激发波长依赖性测量得到了证实,而THz发射特性还被发现与相应的体型平面InGaAs不同。特别是,NW在THz激发光谱中没有表现出明显的最大值,这是由于电子散射到辅助导带波谷所引起的,并且通常在大多数体半导体中都观察到。依赖于波长的发射光谱进一步揭示了改进的间隔波散射的特征,揭示了研究的InGaAs NWs中混合的纤锌矿和闪锌矿相的潜在多型性。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第20期|201106.1-201106.5|共5页
  • 作者单位

    Center for Physical Sciences and Technology, 01180, A. Gostauto 11, Vilnius, Lithuania;

    Walter Schottky Institut, Physik Department, Center of Nanotechnology and Nanomaterials, Technische Universitaet Muenchen, Am Coulombwall 4, Garching 85748, Germany;

    Walter Schottky Institut, Physik Department, Center of Nanotechnology and Nanomaterials, Technische Universitaet Muenchen, Am Coulombwall 4, Garching 85748, Germany;

    Department of Chemistry, Ludwig-Maximilians-Universitat Munchen, Munich 81377, Germany;

    Walter Schottky Institut, Physik Department, Center of Nanotechnology and Nanomaterials, Technische Universitaet Muenchen, Am Coulombwall 4, Garching 85748, Germany;

    Center for Physical Sciences and Technology, 01180, A. Gostauto 11, Vilnius, Lithuania;

    Walter Schottky Institut, Physik Department, Center of Nanotechnology and Nanomaterials, Technische Universitaet Muenchen, Am Coulombwall 4, Garching 85748, Germany;

    Walter Schottky Institut, Physik Department, Center of Nanotechnology and Nanomaterials, Technische Universitaet Muenchen, Am Coulombwall 4, Garching 85748, Germany;

    Center for Physical Sciences and Technology, 01180, A. Gostauto 11, Vilnius, Lithuania;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号