首页> 外文期刊>Applied Physics Letters >Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable geometry
【24h】

Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable geometry

机译:具有可调几何形状的Si和316L不锈钢上的超疏水碳渗透碳纳米管

获取原文
获取原文并翻译 | 示例
       

摘要

The use of carbon nanotubes to create superhydrophobic coatings has been considered due to their ability to offer a relatively uniform nanostructure. However, carbon nanotubes (CNTs) may be considered delicate with a typical diameter of tens of nanometers for a multi-walled CNT; as-grown carbon nanotubes often require the addition of a thin-film hydrophobic coating to render them superhydrophobic. Furthermore, fine control over the diameter of the as-grown CNTs or the overall nanostructure is difficult. This work demonstrates the utility of using carbon infiltration to layer amorphous carbon on multi-walled nanotubes to improve structural integrity and achieve superhydrophobic behavior with tunable geometry. These carbon-infiltrated carbon nanotube (CICNT) surfaces exhibit an increased number of contact points between neighboring tubes, resulting in a composite structure with improved mechanical stability. Additionally, the native surface can be rendered superhydrophobic with a vacuum pyrolysis treatment, with contact angles as high as 160 degrees and contact angle hysteresis on the order of 1 degrees. The CICNT diameter, static contact angle, sliding angle, and contact angle hysteresis were examined for varying levels of carbon-infiltration to determine the effect of infiltration on superhydrophobicity. The same superhydrophobic behavior and tunable geometry were also observed with CICNTs grown directly on stainless steel without an additional catalyst layer. The ability to tune the geometry while maintaining superhydrophobic behavior offers significant potential in condensation heat transfer, anti-icing, microfluidics, antimicrobial surfaces, and other bio-applications where control over the nanostructure is beneficial. Published by AIP Publishing.
机译:由于碳纳米管具有提供相对均匀的纳米结构的能力,因此已经考虑使用碳纳米管来形成超疏水涂层。但是,对于多壁CNT,碳纳米管(CNT)的直径通常只有几十纳米,因此被认为是易碎的。生长中的碳纳米管通常需要添加薄膜疏水涂层,以使其具有超疏水性。此外,难以精确控制所生长的CNT的直径或整个纳米结构。这项工作证明了使用碳渗透在多壁纳米管上沉积无定形碳以提高结构完整性和实现具有可调几何形状的超疏水性能的实用性。这些碳渗透的碳纳米管(CICNT)表面在相邻管之间的接触点数量增加,从而形成具有改善的机械稳定性的复合结构。另外,可以通过真空热解处理使天然表面具有超疏水性,接触角高达160度,接触角滞后约为1度。检查了CICNT直径,静态接触角,滑动角和接触角滞后,以测定碳渗透水平的变化,以确定渗透对超疏水性的​​影响。在没有额外催化剂层的情况下,直接在不锈钢上生长的CICNT也观察到了相同的超疏水性能和可调的几何形状。在保持超疏水性能的同时调节几何形状的能力在冷凝传热,防冰,微流体,抗菌表面以及其他对纳米结构有利的生物应用中具有巨大潜力。由AIP Publishing发布。

著录项

  • 来源
    《Applied Physics Letters》 |2018年第21期|211602.1-211602.5|共5页
  • 作者单位

    Brigham Young Univ, Mech Engn Dept, Provo, UT 84604 USA;

    Brigham Young Univ, Mech Engn Dept, Provo, UT 84604 USA;

    Brigham Young Univ, Mech Engn Dept, Provo, UT 84604 USA;

    Brigham Young Univ, Mech Engn Dept, Provo, UT 84604 USA;

    Brigham Young Univ, Mech Engn Dept, Provo, UT 84604 USA;

    Brigham Young Univ, Mech Engn Dept, Provo, UT 84604 USA;

    Brigham Young Univ, Mech Engn Dept, Provo, UT 84604 USA;

    Brigham Young Univ, Mech Engn Dept, Provo, UT 84604 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号