...
首页> 外文期刊>Applied numerical mathematics >Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method
【24h】

Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method

机译:用新的非局部正则化方法解决Riesz-Feller分数扩散的倒数问题

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we consider the backward problem introduced in [48] for Riesz-Feller fractional diffusion. To begin with, some basic properties of solution of the corresponding forward problem, such as the L-P estimates, symmetry property and asymptotic estimates, are established by Fourier analysis technique. And then, under various a priori bound assumptions, we give the L-2 conditional stability estimates for the solution of backward problem and also its symmetry property. Moreover, in order to overcome the ill-posedness of the backward problem, we propose a new nonlocal regularization method (NLRM) to solve it. That is, the following nonlocal variational functional is introducedJ(phi) = 1/2 parallel to(u(phi(x); x, T) - f (delta)(X)parallel to(2) + beta/2 parallel to[P-alpha 1 * phi](x)parallel to(2),where beta is an element of (0, 1) is a regularization parameter, "*" denotes the convolution operation and P-alpha 1 (x) is called a convolution kernel with parameter alpha(1), which will be selected properly later. The minimizer of above variational problem is defined as the regularization solution, and the L-2 estimates, symmetry property of regularization solution are given. These results actually show the well-posedness of nonlocal variational problem. Our idea is essentially that using this well-posed problem to approximate the backward (ill-posed) problem. Thus, under an a posteriori parameter choice rule, we deduce various convergence rate estimates under different a-priori bound assumptions for the exact solution. Finally, several numerical examples are given to show that the proposed numerical methods are effective and adaptive for different a-priori information. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
机译:在本文中,我们考虑了[48]中引入的Riesz-Feller分数扩散的后向问题。首先,通过傅立叶分析技术建立了相应正向问题解的一些基本性质,如L-P估计,对称性和渐近估计。然后,在各种先验约束假设下,我们给出了L-2条件稳定性估计,用于求解后向问题及其对称性。此外,为了克服后向问题的不适定性,我们提出了一种新的非局部正则化方法(NLRM)来解决它。即,引入以下非局部变分函数:J(phi)= 1/2平行于(u(phi(x); x,T)-f(delta)(X)平行于(2)+ beta / 2平行于平行于(2)的[P-alpha 1 * phi(x),其中beta是(0,1)的元素是正则化参数,“ * ”表示卷积运算,P-alpha 1(x)称为具有参数alpha(1)的卷积核,稍后将对其进行适当选择,将上述变分问题的极小值定义为正则化解,并给出L-2估计,正则化解的对称性,这些结果实际上证明了非局部变分问题的适定性。我们的想法本质上是使用这个适定的问题来近似向后(不适定)问题。因此,在后验参数选择规则下,我们推导了不同条件下的各种收敛速度估计精确解的先验约束假设。最后,通过几个数值算例表明了所提出的数值方法对于不同的先验信息是有效且自适应的。 (C)2018年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号