首页> 外文期刊>Applied numerical mathematics >Convergence of adaptive finite element methods in computational mechanics
【24h】

Convergence of adaptive finite element methods in computational mechanics

机译:计算力学中自适应有限元方法的收敛性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The a priori convergence of finite element methods is based on the density property of the sequence of finite element spaces which essentially assumes a quasi-uniform mesh-refining. The advantage is guaranteed convergence for a large class of data and solutions; the disadvantage is a global mesh refinement everywhere accompanied by large computational costs.rnAdaptive finite element methods (AFEMs) automatically refine exclusively wherever their refinement indication suggests to do so and consequently leave out refinements at other locations. In other words, the density property is violated on purpose and the a priori convergence is not guaranteed automatically and, in fact, crucially depends on algorithmic details. The advantage of AFEMs is a more effective mesh in many practical examples accompanied by smaller computational costs; the disadvantage is that the desirable convergence property is nor guaranteed a priori. Efficient error estimators can justify a numerical approximation a posteriori and so achieve reliability. But it is not theoretically justified from the start that the adaptive mesh-refinement will generate an accurate solution at all. In order to foster the development of a convergence theory and improved design of AFEMs in computational engineering and sciences, this paper describes a particular version of an AFEM and analyses convergence results for three model problems in computational mechanics: linear elastic material (A), nonlinear monotone elastic material (B), and Hencky elastoplastic material (C). It establishes conditions sufficient for error-reduction in (A), for energy-reduction in (B), and eventually for strong convergence of the stress field in (C) in the presence of small hardening.
机译:有限元方法的先验收敛是基于有限元空间序列的密度属性,该属性本质上假设为准均匀网格细化。优点是可以保证针对大量数据和解决方案的收敛;缺点是随处可见的全局网格细化伴随着大量的计算成本。自适应有限元方法(AFEM)会自动在其细化指示表明的地方自动进行细化,因此在其他位置没有进行细化。换句话说,密度特性是有意违背的,并且不能自动保证先验收敛,实际上,关键在于算法的细节。 AFEM的优点是,在许多实际示例中,网格更有效,并且计算成本更低;缺点是期望的收敛性也不能被先验地保证。有效的误差估计器可以证明后验数值近似的合理性,从而实现可靠性。但是从理论上说,自适应网格细化从一开始就根本无法产生准确的解决方案。为了促进收敛理论的发展和计算工程和科学中AFEM的改进设计,本文介绍了AFEM的特定版本并分析了计算力学中三个模型问题的收敛结果:线性弹性材料(A),非线性单调弹性材料(B)和Hencky弹塑性材料(C)。它为减少(A)中的误差,减少(B)中的能量以及最终在小硬化情况下(C)中的应力场强收敛提供了充分的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号