...
首页> 外文期刊>Applied numerical mathematics >Vibration Analysis Of Plane Elasticity Problems By The C~0-continuous Time Stepping Finite Element Method
【24h】

Vibration Analysis Of Plane Elasticity Problems By The C~0-continuous Time Stepping Finite Element Method

机译:平面弹性问题的C〜0连续时间步进有限元振动分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper proposes a C~0-continuous time stepping finite element method to solve vibration problems of plane elasticity. In the time direction, unlike the existing methods [F. Costanzo, H. Huang, Proof of unconditional stability for a single-field discontinuous Galerkin finite element formulation for linear elasto-dynamics, Comput. Methods Appl. Mech. Engrg. 194 (2005) 2059-2076; D.A. French, A space-time finite element method for the wave equation, Comput. Methods Appl. Mech. Engrg. 107 (1993) 145-157; H. Huang, F. Coslanzo, On the use of space-time finite elements in the solution of elasto-dynamic problems with strain discontinuities, Comput. Methods Appl. Mech. Engrg. 191 (2002) 5315-5343; T.J.R. Hughes, G. Hulbert, Space-time finite element methods for elastodynamics: Formulations and error estimates, Comput. Methods Appl. Mech. Engrg. 66 (1988) 339-363; G. Hulbert, T.J.R. Hughes, Space-time finite element methods for second-order hyperbolic equations, Comput. Methods Appl. Mech. Engrg. 84 (1990) 327-348; C. Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 107 (1993) 117-129; X.D. Li, N.E. Wiberg, Structural dynamic analysis by a time-discontinous Galerkin finite element method. Int. J. Numer. Methods Engrg. 39 (1996) 2131-2152; X.D. Li, N.E. Wiberg, Implementation and adaptivity of a space-time finite element method for structural dynamics, Comput. Methods Appl. Mech. Engrg. 156 (1998) 211-229], this method does not use the discontinuous Galerkin (DG) method to simultaneously discretize the displacement and velocity fields, but only use the C~0-continuous Galerkin method to discretize the displacement field instead. This greatly reduces the size of the linear system to be solved at each time step. The finite element in the space directions is taken as the usual P_(r-1) -conforming element with r ≥ 2. It is proved that the error of the method in the energy norm is O(h~(r-1) + k~3), where h and k denote the mesh sizes of the subdivisions in the space and time directions, respectively. Some numerical tests are included to show the computational performance of the method.
机译:为解决平面弹性振动问题,提出了一种C〜0连续时间步进有限元方法。在时间方向上,与现有方法不同[F. Costanzo,H。Huang,线性弹性动力学单场不连续Galerkin有限元公式的无条件稳定性证明,计算机。方法应用。机甲gr 194(2005)2059-2076; D.A. French,波动方程的时空有限元方法,计算。方法应用。机甲gr 107(1993)145-157; H. Huang,F。Coslanzo,关于在具有应变不连续性的弹性动力学问题中使用时空有限元,计算机。方法应用。机甲gr 191(2002)5315-5343;杰瑞Hughes,G。Hulbert,弹性动力学的时空有限元方法:公式和误差估计,计算机。方法应用。机甲gr 66(1988)339-363; G.Hulbert,T.J.R.休斯,二阶双曲方程的时空有限元方法,计算机。方法应用。机甲gr 84(1990)327-348; C. Johnson,二阶双曲问题的间断Galerkin有限元方法,计算机。方法应用。机甲gr 107(1993)117-129; X.D.李娜Wiberg,通过不连续的Galerkin有限元方法进行结构动力分析。诠释J.纽默方法工程。 39(1996)2131-2152; X.D.李娜Wiberg,结构动力学的时空有限元方法的实现和适应性,计算机。方法应用。机甲gr 156(1998)211-229],该方法不使用不连续Galerkin(DG)方法同时离散化位移和速度场,而仅使用C〜0-连续Galerkin方法离散化位移场。这大大减小了每个时间步长要求解的线性系统的大小。取空​​间方向上的有限元作为通常的P_(r-1)符合元,且r≥2。证明了该方法在能量范数上的误差为O(h〜(r-1)+ k〜3),其中h和k分别表示细分在空间和时间方向上的网格大小。包括一些数值测试,以显示该方法的计算性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号