...
首页> 外文期刊>Applied numerical mathematics >Convergence and error theorems for Hermite function pseudo-RBFs: Interpolation on a finite interval by Gaussian-localized polynomials
【24h】

Convergence and error theorems for Hermite function pseudo-RBFs: Interpolation on a finite interval by Gaussian-localized polynomials

机译:Hermite函数伪RBF的收敛和误差定理:通过高斯局部多项式在有限区间内插

获取原文
获取原文并翻译 | 示例

摘要

Any basis set {φ_j(x)} can be rearranged by linear combinations into a basis of cardinal functions C_j(x) with the property that C_j(x_k) = δ_(jk) where the x_k are the interpolation points and δ_(jk) is the usual Kronecker delta-function, equal to one when j = k and equal to zero otherwise. The interpolant to a function f(x) then takes the simple form f_N(x) = ∑_(j=1)~N f(x_j)C_j(x). In a companion study, Boyd and Alfaro showed that the cardinal functions for five different spectrally accurate radial basis functions (RBFs) are well approximated by polynomial cardinal functions multiplied by a Gaussian function when the RBF kernels are wide and the number of interpolation points N is small or moderate. Here, we abandon RBFs by using interpolants that are Gaussian-localized polynomials. This basis is equivalent to Hermite functions, a widely used basis for unbounded domains. We prove a rigorous convergence theorem for uniform grid on a finite interval that asserts a geometric rate of convergence for such Gaussian localized polynomial interpolants. Experimentally, we show that Hermite functions are also successful for interpolation on finite irregular grids, even on random grids. If a simple formula for the construction of the cardinal basis is known, then this is great treasure: a costly dense matrix problem is unnecessary. Lagrange invented an explicit product form for polynomial cardinal functions; Hermite function cardinals can be constructed by merely multiplying Lagrange's product by a Gaussian, exp(-qx~2). We give guidelines for choosing the constant q; theory is simple because the Gaussian localizer is the same for all N cardinal functions. Gaussian RBFs are much more costly, much more ill-conditioned than Gaussian-localized polynomial interpolants.
机译:可以通过线性组合将任何基集{φ_j(x)}重新排列为基数函数C_j(x)的基,其属性为C_j(x_k)=δ_(jk),其中x_k是插值点,δ_(jk)是通常的Kronecker三角函数,当j = k时等于1,否则等于0。函数f(x)的插值然后采用简单形式f_N(x)= ∑_(j = 1)〜N f(x_j)C_j(x)。在一项伴随研究中,Boyd和Alfaro表明,当RBF核较宽且插值点N为N时,五个不同光谱准确的径向基函数(RBF)的基函数可以通过多项式基函数乘以高斯函数很好地近似。小或中等。在这里,我们通过使用作为高斯局部多项式的内插来放弃RBF。此基础等效于Hermite函数,这是无界域的一种广泛使用的基础。我们证明了一个有限间隔上的均匀网格的严格收敛定理,它证明了这种高斯局部多项式插值的几何收敛速度。通过实验,我们证明了Hermite函数在有限不规则网格(甚至在随机网格)上的插值也很成功。如果知道用于构造基数的简单公式,那么这就是很大的宝藏:不需要昂贵的密集矩阵问题。拉格朗日发明了多项式基数函数的显式乘积形式。可以通过仅将拉格朗日积乘以高斯exp(-qx〜2)来构造Hermite函数基数。我们给出选择常数q的准则;理论很简单,因为所有N个基函数的高斯定位器都是相同的。高斯RBF比高斯局部多项式插值器昂贵得多,病态更严重。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号