首页> 外文期刊>Applied Mathematical Modelling >3D actual microstructure-based modeling of non-isothermal infiltration behavior and void formation in liquid composite molding
【24h】

3D actual microstructure-based modeling of non-isothermal infiltration behavior and void formation in liquid composite molding

机译:基于3D实际微观结构的非等温渗透行为和空隙形成液复合成型中的空隙形成

获取原文
获取原文并翻译 | 示例
       

摘要

In the liquid composite molding (LCM) non-isothermal infiltration process, the effect of the complex interaction between viscous pressure and capillary pressure on the fluid invasion morphology and void formation mechanism is not well understood. Based on high-resolution, three-dimensional (3D) computed microtomography (uCT) images of porous silicon carbide particulate-reinforced composite (SiCp) preforms, a pore-scale, non-isothermal two-phase flow numerical model was implemented to describe the flow displacement pattern that evolves with the decrease in displacement velocity during the infiltration process. The simulation approach was performed by coupling Cahn-Hilliard phase field and heat equations using a robust finite element solver. The numerical results indicate that (ⅰ) the displacement pattern experiences a transition from stable displacement to capillary fingering, which mainly depends on the transition of complex yet intriguing pore-scale events responsible for local meniscus dynamics, from viscous self-correcting smoothing transition to the noncooperative Haines jump; (ⅱ) the void trapping stability is higher in the capillary fingering pattern, and it is difficult for the macrovoids generated by the bypass trapping mechanism to migrate; (ⅲ) there is a critical capillary number (Ca) value, and as long as the Ca of the displacement front during infiltration process is not lower than this value, the local macroscopic void concentration can be avoided; (ⅳ) the non-isothermal effect in the LCM simulation cannot be ignored, where the change in two-phase physical properties caused by the evolution of the temperature field affects the local pore-scale flow behavior, i.e., the disappearance of the partial interface pinning phenomenon.
机译:在液体复合成型(LCM)非等温渗透过程中,粘性压力和毛细管压力之间的复杂相互作用对流体侵袭形态和空隙形成机制的影响并不了解。基于高分辨率,三维(3D)计算的微孔术(UCT)多孔碳化硅颗粒颗粒增强复合材料(SICP)预制件,孔径,非等温两相流量数模型的描述来描述流动位移模式随着渗透过程中的位移速度的降低而发展。通过使用稳健的有限元件求解Cahn-Hilliard相位和热方程来执行仿真方法。数值结果表明(Ⅰ)位移模式经历从稳定的位移到毛细管指令的过渡,这主要取决于负责局部弯月球动态的复杂又有趣的孔隙率事件的转变,从粘性自我校正平滑过渡到非洲化海恩斯跳; (Ⅱ)毛细管指令图案中的空隙捕获稳定性较高,旁路捕获机制产生的宏型难以迁移; (Ⅲ)存在临界毛细数(CA)值,只要渗透过程中的位移前沿的CA不低于该值,就可以避免局部宏观空隙浓度; (ⅳ)LCM模拟中的非等温效应不能忽视,其中由温度场的演化引起的两相物理性质的变化影响了本地孔径的流动,即部分界面的消失固定现象。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2021年第6期|388-402|共15页
  • 作者单位

    Center of Materials Science and Optoelectronics Engineering College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China;

    Center of Materials Science and Optoelectronics Engineering College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China;

    School of Materials Science and Engineering Shanghai University Shanghai 200444 China;

    School of Materials Science and Engineering Shanghai University Shanghai 200444 China;

    College of Aerospace Science and Engineering National University of Defense Technology Changsha 410073 China;

    College of Aerospace Science and Engineering National University of Defense Technology Changsha 410073 China;

    Center of Materials Science and Optoelectronics Engineering College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China;

    School of Materials Science and Engineering Shanghai University Shanghai 200444 China;

    Center of Materials Science and Optoelectronics Engineering College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Non-isothermal multiphase flow; 3D reconstructed porous media; Flow displacement pattern; Void formation mechanism; Optimized infiltration strategy;

    机译:非等温多相流动;3D重建多孔介质;流动位移模式;空隙形成机制;优化渗透策略;
  • 入库时间 2022-08-18 23:31:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号