首页> 外文期刊>Applied Mathematical Modelling >Novel high-order compact approach for dynamics of spiral waves in excitable media
【24h】

Novel high-order compact approach for dynamics of spiral waves in excitable media

机译:激发介质中螺旋波动力学的新型高阶紧致方法

获取原文
获取原文并翻译 | 示例
           

摘要

The current study envisages to investigate the dynamics of spiral wave in and without the presence of obstacles in excitable media through a comprehensive spectral density analysis. While most of the previous studies on spiral wave dynamics are seen to have been obtained by exploiting the state variables using lower order explicit schemes to discretize the governing equations, we accomplish the same by exploiting the spiral tip path with data obtained from a recently developed higher order compact finite difference scheme. This scheme which is implicit in nature and unconditionally stable is seen to efficiently resolve the spiral wave patterns. On the other hand, owing to implicit dispersion, diffusion and reaction terms inherently present in the explicit data, the spiral tip resulting from it was seen to behave differently for different time steps. These issues are illustrated through a modified differential equation analysis of the explicit scheme. For the range of the parameters considered, we further observed that the role of the obstacle was only to change the trajectory paths, as they were seen to settle into a periodic motion eventually. In the process, we also establish the grid independence and the rate of convergence of the simulated data, apart from exploring the stability of the computed rotating spiral wave solutions. (C) 2019 Elsevier Inc. All rights reserved.
机译:当前的研究设想通过全面的光谱密度分析来研究可激发介质中有无障碍物时螺旋波的动力学。虽然先前关于螺旋波动力学的大多数研究被认为是通过使用低阶显式方案离散状态方程来利用状态变量来实现的,但我们通过利用螺旋尖端路径并利用从最近开发的更高阶紧致有限差分方案。该方案本质上是隐含的并且是无条件稳定的,可以有效地解决螺旋波形。另一方面,由于显式数据中固有地存在隐式分散,扩散和反应项,因此可以看出,由它产生的螺旋形尖端在不同的时间步长上具有不同的行为。通过对显式方案进行改进的微分方程分析,可以说明这些问题。对于所考虑的参数范围,我们进一步观察到,障碍物的作用只是改变轨迹路径,因为最终它们会沉降为周期性运动。在此过程中,除了探索计算的旋转螺旋波解的稳定性外,我们还建立了网格独立性和模拟数据的收敛速度。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号