首页> 外文期刊>Applied Mathematical Modelling >Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory
【24h】

Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory

机译:基于非局部弹性理论的弹性基底上多层石墨烯片的有限元屈曲分析

获取原文
获取原文并翻译 | 示例
       

摘要

Graphene-polymer nano-composites are one of the most applicable engineering nano-structures with superior mechanical properties. In the present study, a finite element (FE) approach based on the size dependent nonlocal elasticity theory is developed for buckling analysis of nano-scaled multi-layered graphene sheets (MLGSs) embedded in polymer matrix. The van der Waals (vdW) interactions between the graphene layers and graphene-polymer are simulated as a set of linear springs using the Lennard-Jones potential model. The governing stability equations for nonlocal classical orthotropic plates together with the weighted residual formulation are employed to explicitly obtain stiffness and buckling matrices for a multi-layered super element of MLGS. The accuracy of the current finite element analysis (FEA) is approved through a comparison with molecular dynamics (MD) and analytical solutions available in the literature. Effects of nonlocal parameter, dimensions, vdW interactions, elastic foundation, mode numbers and boundary conditions on critical in-plane loads are investigated for different types of MLGS. It is found that buckling loads of MLGS are generally of two types namely In-Phase (INPH) and Out-of-Phase (OPH) loads. The INPH loads are independent of interlayer vdW interactions while the OPH loads depend on vdW interactions. It is seen that the decreasing effect of nonlocal parameter on the OPH buckling loads dwindles as the interlayer vdW interactions become stronger. Also, it is found that the small scale and polymer substrate have noticeable effects on the buckling loads of embedded MLGS.
机译:石墨烯-聚合物纳米复合材料是具有优异机械性能的最适用的工程纳米结构之一。在本研究中,开发了一种基于尺寸依赖性非局部弹性理论的有限元(FE)方法,用于嵌入聚合物基质中的纳米级多层石墨烯片(MLGS)的屈曲分析。使用Lennard-Jones势模型将石墨烯层与石墨烯聚合物之间的范德华(vdW)相互作用模拟为一组线性弹簧。使用非局部经典正交异性板的支配稳定性方程以及加权残差公式,可以明确获得多层MLGS多层单元的刚度和屈曲矩阵。当前的有限元分析(FEA)的准确性是通过与分子动力学(MD)和文献中提供的分析解决方案进行比较而得到认可的。针对不同类型的MLGS,研究了非局部参数,尺寸,vdW相互作用,弹性地基,模式编号和边界条件对临界平面载荷的影响。已经发现,MLGS的屈曲载荷通常有两种类型,即同相(INPH)和异相(OPH)载荷。 INPH负载独立于层间vdW交互,而OPH负载取决于vdW交互。可以看出,随着层间vdW相互作用的增强,非局部参数对OPH屈曲载荷的减小作用逐渐减弱。而且,发现小尺寸和聚合物基底对嵌入式MLGS的屈曲载荷具有显着影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号