首页> 外文期刊>Applied Mathematical Modelling >Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects
【24h】

Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects

机译:考虑热效应和表面效应的纳米束在集中集中在粘弹性基础上的移动中的非线性强迫振动分析

获取原文
获取原文并翻译 | 示例
       

摘要

Analytical solution for the steady-state response of an Euler-Bernoulli nanobeam subjected to moving concentrated load and resting on a viscoelastic foundation with surface effects consideration in a thermal environment is investigated in this article. At first, based on the Eringen's nonlocal theory, the governing equations of motion are derived using the Hamilton's principle. Then, in order to solve the equation, Galerkin method is applied to discretize the governing nonlinear partial differential equation to a nonlinear ordinary differential equation; solution is obtained employing the perturbation technique (multiple scales method). Results indicate that by increasing of various parameters such as foundation damping, linear stiffness, residual surface stress and the temperature change, the jump phenomenon is postponed and with increasing the amplitude of the moving force and the nonlocal parameter, the jump phenomenon occurs earlier and its frequency and the peak value of amplitude of vibration increases. In addition, it is seen that the non-linear stiffness and the critical velocity of the moving load are important factors in studying nanobeams subjected to moving concentrated load. Presence of the non-linear stiffness of Winkler foundation resulting nanobeam tends to instability and so, the jump phenomenon occurs. But, presence of the linear stiffness will lead to stability of the nanobeam. In the next sections of the paper, frequency responses of the nanobeam made of temperature-dependent material properties under multi-frequency excitations are investigated.
机译:本文研究了在热环境下考虑表面效应的,集中移动并置于粘弹性基础上的Euler-Bernoulli纳米束稳态响应的解析解。首先,基于艾林根的非局部理论,使用汉密尔顿原理导出运动的控制方程。然后,为了求解该方程,应用Galerkin方法将控制的非线性偏微分方程离散化为非线性常微分方程。使用摄动技术(多尺度方法)获得解。结果表明,通过增加基础阻尼,线性刚度,残余表面应力和温度变化等各种参数,可以推迟跳跃现象,并且随着运动力和非局部参数幅度的增大,跳跃现象会更早地发生,并且其发生的原因也包括在内。频率和振幅的峰值增加。此外,可以看出,非线性非线性刚度和运动载荷的临界速度是研究纳米梁在运动集中载荷下的重要因素。 Winkler基础的非线性刚度的存在会导致纳米束趋于不稳定,因此会发生跳跃现象。但是,线性刚度的存在将导致纳米束的稳定性。在本文的下一部分中,将研究在多频激发下由温度相关材料特性制成的纳米束的频率响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号