首页> 外文期刊>Applied Mathematical Modelling >A decoupled finite particle method for modeling incompressible flows with free surfaces
【24h】

A decoupled finite particle method for modeling incompressible flows with free surfaces

机译:解耦有限粒子法的自由表面不可压缩流建模

获取原文
获取原文并翻译 | 示例
       

摘要

Smoothed particle hydrodynamics (SPH) is a meshfree Lagrangian particle method, and it has been applied to different areas in engineering and sciences. One concern of the conventional SPH is its low accuracy due to particle inconsistency, which hinders the further methodology development. The finite particle method (FPM) restores the particle consistency in the conventional SPH and thus significantly improves the computational accuracy. However, as pointwise corrective matrix inversion is necessary, FPM may encounter instability problems for highly disordered particle distribution. In this paper, through Taylor series analyses with integration approximation and assuming diagonal dominance of the resultant corrective matrix, a new meshfree particle approximation method, decoupled FPM (DFPM), is developed. DFPM is a corrective SPH method, and is flexible, cost-effective and easy in coding with better computational accuracy. It is very attractive for modeling problems with extremely disordered particle distribution as no matrix inversion is required. One- and two-dimensional numerical tests with different kernel functions, smoothing lengths and particle distributions are conducted. It is demonstrated that DFPM has much better accuracy than conventional SPH, while particle distribution and the selection of smoothing function and smoothing length have little influence on DFPM simulation results. DFPM is further applied to model incompressible flows including Poiseuille flow, Couette flow, shear cavity and liquid sloshing. It is shown that DFPM is as accurate as FPM while as flexible as SPH, and it is very attractive in modeling incompressible flows with possible free surfaces. (C) 2018 Elsevier Inc. All rights reserved.
机译:平滑粒子流体动力学(SPH)是一种无网格的拉格朗日粒子方法,已在工程和科学领域应用于不同领域。常规SPH的一个关注点是由于颗粒的不一致性而导致的精度低,这阻碍了方法学的进一步发展。有限粒子法(FPM)可以恢复常规SPH中的粒子一致性,从而显着提高了计算精度。但是,由于需要逐点校正矩阵求逆,因此FPM可能会遇到高度混乱的粒子分布的不稳定性问题。在本文中,通过采用积分近似的泰勒级数分析并假设所得校正矩阵的对角线占优,开发了一种新的无网格粒子近似方法,即解耦FPM(DFPM)。 DFPM是一种纠正性SPH方法,具有灵活性,成本效益高,易于编码且计算精度高的优点。它对于建模具有极其无序的粒子分布的问题非常有吸引力,因为不需要矩阵反转。进行了具有不同核函数,平滑长度和粒子分布的一维和二维数值测试。结果表明,DFPM的精度比传统的SPH好得多,而粒子分布以及平滑函数和平滑长度的选择对DFPM仿真结果的影响很小。 DFPM进一步用于建模不可压缩的流动,包括泊泊流,库埃特流,剪切腔和液体晃动。结果表明,DFPM与FPM一样精确,而SPH则一样灵活,并且在模拟具有可能自由表面的不可压缩流方面非常有吸引力。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号