...
首页> 外文期刊>Applied Energy >Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system
【24h】

Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system

机译:使用纳米制冷剂增强喷射器制冷系统性能的研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, the performance of an ejector refrigeration system using nano-refrigerants is investigated. A new hypothesis is proposed for flow boiling modeling, where nanoparticles are assumed to not migrate to the vapor phase as phase changes occur continuously; this causes a significant increase in nanoparticle mass fraction for high vapor quality values. This assumption shows a reasonable correlation with previously published data for R113/CuO mixtures, where an average deviation of 9.24% was obtained. A parametric analysis is performed to investigate the variation in heat transfer coefficient (HTC) with temperature, nanoparticle type, size, and mass fraction. Finally, the effect of nanoparticles on the coefficient of performance (COP) of the ejector refrigeration cycle as a response to the augmented flow boiling HTC is investigated by simulating a 5-kW cooling refrigeration cycle. Considering the advantage of using nano-refrigerants, a higher quality vapor was attained at the evaporator exit, resulting in an increase in the enthalpy difference in the evaporator in the ejector cooling cycle. As a result, a lower mass flux inside the evaporator is required to attain the same cooling capacity. Improved refrigerant-side HTCs improve the overall HTCs of the evaporator, allowing the evaporator to operate at lower temperature differences and higher pressures, which consequently increases the cycle COPs. Furthermore, the refrigerant vapor quality increases at the evaporator exit, leading to an enhanced COP of the cycle. The augmentation in COP reached 24.7% and 12.61% for R134a with 2 wt.% CuO and Al2O3, respectively, whereas the vapor quality for the refrigerant leaving the evaporator increased from 0.7616 for the case of the pure refrigerant to 0.8212 for R134a/CuO 2 wt.% nano-refrigerant.
机译:在这项工作中,研究了使用纳米制冷剂的喷射器制冷系统的性能。为流动沸腾建模提出了一个新的假设,其中假设纳米粒子不会随着相变连续发生而迁移到气相。对于高蒸气质量值,这导致纳米颗粒质量分数的显着增加。该假设显示与R113 / CuO混合物先前发布的数据有合理的相关性,其中R9.2 / CuO混合物的平均偏差为9.24%。进行参数分析以研究传热系数(HTC)随温度,纳米颗粒类型,尺寸和质量分数的变化。最后,通过模拟一个5 kW的制冷制冷循环,研究了纳米颗粒对喷射制冷循环的性能系数(COP)的影响,以响应沸腾HTC的增加。考虑到使用纳米制冷剂的优势,在蒸发器出口处可获得更高质量的蒸汽,从而导致喷射器冷却循环中蒸发器的焓差增加。结果,为了获得相同的冷却能力,需要蒸发器内部的质量通量较低。改进的制冷剂侧HTC改善了蒸发器的整体HTC,从而使蒸发器可以在较低的温度差和较高的压力下运行,从而增加了循环COP。此外,制冷剂蒸气质量在蒸发器出口处增加,导致循环的COP增强。含2 wt。%CuO和Al2O3的R134a的COP增幅分别达到24.7%和12.61%,而离开蒸发器的制冷剂的蒸汽质量从纯制冷剂的0.7616提高到R134a / CuO 2的0.8212 wt。%纳米制冷剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号