首页> 外文期刊>Applied Energy >Hydraulic damping mechanism of low frequency oscillations in power systems: Quantitative analysis using a nonlinear model of hydropower plants
【24h】

Hydraulic damping mechanism of low frequency oscillations in power systems: Quantitative analysis using a nonlinear model of hydropower plants

机译:电力系统低频振荡的液压阻尼机制:水电厂非线性模型的定量分析

获取原文
获取原文并翻译 | 示例
           

摘要

As power systems grow reliant on an increasing mix of intermittent renewables, hydropower units are being called upon to provide more aggressive power-frequency control. This dynamic is enlarging the significance of interaction between hydraulic and electrical subsystems in hydropower plants (HPPs). The influence from HPPs on power system stability is of great importance, especially for hydro-dominant power systems like the Nordic power system and the China Southern Power Grid. This paper aims to quantify and reveal the influencing mechanism of the hydraulic damping of low frequency oscillations in power systems. An equivalent hydraulic turbine damping coefficient is introduced, and a nonlinear HPP model that combines electrical subsystems with a refined hydraulic-mechanical subsystem is established and verified. A novel quantifying methodology is proposed through simulations by two different models based on case studies on a Swedish HPP. Then, the quantification results of the damping coefficient are presented and the influencing mechanism behind is revealed, by studying three representative factors from the hydraulic-mechanical system: the delay in turbine governor systems, governor parameter and penstock length. Observations and discussions of on-site measurements are included to support the analysis. The results show that the damping effect from hydraulic turbines can be considerable. Based on the limited cases in the HPP, the damping coefficient can vary from + 3.0 to -2.3, while previously the contribution has been unclear and normally assumed to be positive. The phase shift in the mechanical power response with respect to the rotational speed deviation is an important reason for the different damping performance. Furthermore, the effect and significance of implementing the damping coefficient on cases with power system stabilizer (PSS) are demonstrated.
机译:随着电力系统越来越依赖间歇性可再生能源的混合,水力发电机组被要求提供更积极的工频控制。这种动态放大了水力发电厂(HPP)中液压子系统和电气子系统之间相互作用的重要性。 HPP对电力系统稳定性的影响非常重要,特别是对于水电为主的电力系统,例如北欧电力系统和南方电网。本文旨在量化并揭示电力系统低频振荡液压阻尼的影响机理。介绍了等效的水轮机阻尼系数,并建立并验证了将电气子系统与完善的液压机械子系统相结合的非线性HPP模型。通过基于瑞典HPP案例研究的两个不同模型的仿真,提出了一种新颖的量化方法。然后,通过研究水力机械系统中的三个代表性因素,给出了阻尼系数的量化结果,并揭示了其背后的影响机理:涡轮调速器系统的延迟,调速器参数和压力管道长度。包括现场测量的观察和讨论以支持分析。结果表明,水轮机的阻尼效果可观。根据HPP中的有限情况,阻尼系数可以在+ 3.0到-2.3之间变化,而以前的贡献尚不清楚,通常假定为正。机械功率响应相对于转速偏差的相移是阻尼性能不同的重要原因。此外,还演示了在具有电力系统稳定器(PSS)的情况下实施阻尼系数的效果和意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号