首页> 外文期刊>Applied Energy >Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements
【24h】

Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements

机译:基于物理知识的深度学习和LIDAR测量的时空风场预测

获取原文
获取原文并翻译 | 示例
           

摘要

Spatiotemporal wind field information is of great interest in wind industry e.g. for wind resource assessment and wind turbine/farm monitoring & control. However, its measurement is not feasible because only sparse point measurements are available with the current sensor technology such as LIDAR. This work fills the gap by developing a method that can achieve spatiotemporal wind field predictions by combining LIDAR measurements and flow physics. Specifically, a deep neural network is constructed and the Navier?Stokes equations, which provide a good description of atmospheric flows, are incorporated in the deep neural network by employing the physics-informed deep learning technique. The training of this physics-incorporated deep learning model only requires the sparse LIDAR measurement data while the spatiotemporal wind field in the whole domain (which cannot be measured) can be predicted after training. This study, which can discover complex wind patterns that do not present in the training dataset, is totally distinct from previous machine learning based wind prediction studies which treat machine learning models as ?black-box" and require the corresponding input and target values to learn complex relations. The numerical results on the prediction of the wind field in front of a wind turbine show that the proposed method predicts the spatiotemporal flow velocity (including both downwind and crosswind components) in the whole domain very well for a wide range of scenarios (including various measurement noises, resolutions, LIDAR look directions, and turbulence levels), which is promising given that only line-of-sight wind speed measurements at sparse locations are used.
机译:时空风景信息对风力行业有益。用于风力资源评估和风力涡轮机/农场监测与控制。然而,其测量是不可行的,因为仅具有LIDAR等电流传感器技术的稀疏点测量。通过开发通过结合激光雷达测量和流量物理来实现即可实现时空风力场预测的方法来填补差距。具体地,构造了深度神经网络,并通过采用物理知识的深度学习技术在深神经网络中结合在深度神经网络中的良好描述中,建造了深度神经网络。这种物理掺入的深度学习模型的培训只需要稀疏的LIDAR测量数据,而训练后可以预测整个领域的时空风场(不能测量)。这项研究可以发现在训练数据集中不存在的复杂风图案,与以前的基于机器学习的风预测研究完全不同,这些研究将机器学习模型视为黑色盒子,并要求相应的输入和目标值来学习复杂的关系。风力涡轮机前面预测风电场预测的数值结果表明,该方法在整个领域中预测了整个领域的时空流速(包括下行和跨越组件)对于广泛的场景(包括各种测量噪声,分辨率,激光雷达看法和湍流水平,这是有希望的,因为仅使用稀疏位置的视线风速测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号