首页> 外文期刊>Applied Energy >A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger
【24h】

A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger

机译:用于无线电动汽车充电器的电容式功率传输转换器的补偿拓扑系列

获取原文
获取原文并翻译 | 示例
           

摘要

A large scale of electric vehicles can ideally maintain the stability of renewable power supply by acting as storage buffers for alleviating the intermittence in the integration of renewable energy sources for constructing a low-carbon energy system. However, the inconvenient conductive charging becomes a barrier in the popularization of electric vehicles. Wireless power transfer technology is in the spotlight because of the flexibility and convenience in powering electric vehicles. Recently, the Capacitive Power Transfer has received extensive attention due to simple coupler structure, rotatable coupler, and negligible heating of the metal foreign object. In the capacitive-based wireless charging system, the higher-order compensation topology is essential to enhance power transfer capability limited by the small coupling capacitance. However, with the increase of the resonant elements, the form of the resonant network becomes diverse. Currently, the researches focus on the characteristics of specific symmetrical compensation topologies. This paper presents a family of compensation topologies for the Capacitive Power Transfer system to achieve constant-voltage or constant-current output. A design procedure is summarized to construct the resonant networks, so as to design the compensation parameters. Considering the coupling capacitor variations caused by parking position deviation, a parameter tuning method is proposed to realize primary zero-voltage switching by adjusting the parameter of the double-sided inductor-capacitor-inductor-capacitor compensation topology. Experiments show that the prototype achieves constant-current output and zero-voltage switching when the coupling capacitance varies. The system efficiency reaches 93.57% at 1.5 kW input power with the input and output voltage around 250 V.
机译:大型电动汽车可以通过充当存储缓冲区来缓解可再生能源整合中的低间隔,以构建低碳能源系统,从而理想地保持可再生电源的稳定性。然而,不便的导电充电成为电动汽车普及的障碍。无线电源传输技术因其为电动汽车供电的灵活性和便利性而备受关注。近年来,由于简单的耦合器结构,可旋转的耦合器以及可忽略的金属异物加热,电容式电力传输受到了广泛的关注。在基于电容的无线充电系统中,高阶补偿拓扑对于增强受较小耦合电容限制的功率传输能力至关重要。然而,随着谐振元件的增加,谐振网络的形式变得多样化。目前,研究集中在特定对称补偿拓扑的特性上。本文介绍了用于电容式功率传输系统的补偿拓扑系列,以实现恒定电压或恒定电流输出。总结了构造谐振网络的设计程序,以设计补偿参数。考虑到驻车位置偏差引起的耦合电容变化,提出了一种参数调整方法,通过调节双面电感电容电容补偿拓扑的参数来实现一次零电压开关。实验表明,当耦合电容变化时,该原型可以实现恒流输出和零电压切换。输入功率为1.5 V时输入功率为250 V时,系统效率达到93.57%。

著录项

  • 来源
    《Applied Energy》 |2020年第15期|114156.1-114156.15|共15页
  • 作者

  • 作者单位

    Collaborat Innovat Ctr Elect Vehicles Beijing 5 Zhongguancun St Beijing 100081 Peoples R China|Beijing Inst Technol Natl Engn Lab Elect Vehicles 5 Zhongguancun St Beijing 100081 Peoples R China;

    Beijing Inst Space Launch Technol Bldg 34 1 Nandahongmen Rd Beijing 100076 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electric vehicle; Capacitive power transfer; Compensation topology; Zero-voltage switching;

    机译:电动汽车;电容式功率传输;补偿拓扑;零电压开关;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号