首页> 外文期刊>Applied Energy >Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station
【24h】

Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station

机译:基于虚拟电池的电动汽车快速充电站直流微电网的下垂控制和储能系统尺寸优化

获取原文
获取原文并翻译 | 示例
       

摘要

DC microgrid is supposed to be a feasible solution to reduce the negative impact of electric vehicle (EV) fast charging on the electric grid and improve the penetration of photovoltaics (PV) generation. In this paper, an improved decentralized Virtual-battery based droop control with the capability of bus voltage maintenance, load power dispatch and SOC balance of the energy storage system (ESS) is proposed to ensure the autonomous and stable operation of the DC microgrid. The reference output voltage and virtual resistance in the droop control loop are altered dynamically based on the Virtual-battery model of the ESS. The coordinated control among the PV-ESS-Grid integrated system is realized through the primary Bus-Signaling control, where the reference voltages at which the control modes of the PV array and the grid are switched are designed based on the VirtualOCV of the ESS. The effectiveness of the proposed control strategy is validated in MATLAB/Simulink environment with an equivalent bus capacitance-based model where the EV charging profile is obtained from real-world charging data of a fast charging station. The merits of the control strategy including higher PV utilization, less frequent connection of the grid and more precise voltage tracking are highlighted in comparison with the conventional droop control strategy. Finally, the sizing of the ESSs is optimized based on the total cost of the DC microgrid, including the daily electricity cost purchased from the grid and the depreciation cost of the ESSs based on the expanded capacity degradation model of Li-ion batteries.
机译:直流微电网被认为是减少电动汽车(EV)快速充电对电网的负面影响并提高光伏发电(PV)渗透性的可行解决方案。本文提出了一种改进的基于分散式虚拟电池的下垂控制,具有母线电压维护,负载功率分配和储能系统(SOC)的SOC平衡能力,以确保直流微电网的自主和稳定运行。根据ESS的虚拟电池模型,可以动态更改下垂控制环路中的参考输出电压和虚拟电阻。 PV-ESS-Grid集成系统之间的协调控制是通过主总线信号控制来实现的,其中,基于ESS的VirtualOCV设计切换PV阵列和电网的控制模式的参考电压。在MATLAB / Simulink环境中,基于等效的基于总线电容的模型验证了所提出控制策略的有效性,该模型中的EV充电曲线是从快速充电站的实际充电数据中获得的。与传统的下垂控制策略相比,该控制策略的优点包括更高的光伏利用率,较少的电网连接以及更精确的电压跟踪。最后,根据直流微电网的总成本(包括从电网购买的每日电费和基于扩展的锂离子电池容量退化模型的ESS的折旧成本)优化ESS的规模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号