首页> 外文期刊>Applied Energy >The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO_2 plume geothermal system
【24h】

The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO_2 plume geothermal system

机译:CO_2羽状地热系统中复杂的流体-岩石相互作用对地热开采的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The ubiquitous natural sedimentary reservoirs and their high permeability have made the CO2plume geothermal system increasingly attractive. However, the complicated fluid-rock interactions during the geothermal exploitation can cause severe reservoir damage, constraining the excellent heat mining performance of the CO2and decreasing the possible applications of the CO2plume geothermal system. In order to analyze and solve this energy issue affecting the geothermal exploitation, in this study, a comprehensive numerical simulation model was established, which can consider formation water evaporation, salt precipitation, CO2-water-rock geochemical reactions, and the changes in reservoir porosity and permeability in the CO2plume geothermal (CPG) system. Using this model, the geochemical reactions and salt precipitation and their effects on the geothermal exploitation were analyzed, and some measures were proposed to reduce the influence of fluid-rock interactions on the heat mining rate. The simulation results show that the gravity and the negative gas-liquid capillary pressure gradient induced by evaporation can cause the formation water to flow toward the injector. The back flow of the formation water results in salt precipitation accumulation in the injection well region, which can cause severe reservoir damage and consequent reductions to the heat mining rate. The CO2-water-rock geochemical reactions could result in the dissolution of certain minerals and precipitation of others, but its minimal influence on the heat mining rate can be ignored. However, salt precipitation can affect the geochemical reactions by influencing the CO2flow and distribution, which can reduce the heat mining rate up to 2/5 of the original. Sensitivity studies show that the reservoir condition can affect the salt precipitation and heat mining rate, so a sedimentary reservoir with high temperature, high porosity and permeability, and low salinity should be selected for CPG application, with an appropriately high injection-production pressure difference. The injection of low salinity water before CO2injection and the combined injection of CO2and water vapor can be applied to reduce the salt precipitation and increase the heat mining rate in the CPG system.
机译:无处不在的天然沉积储层及其高渗透率使CO2plume地热系统越来越有吸引力。但是,地热开采过程中复杂的流体-岩石相互作用会造成严重的储层破坏,限制了CO2出色的热采性能,并降低了CO2plume地热系统的可能应用。为了分析和解决影响地热开采的能源问题,本研究建立了一个综合的数值模拟模型,该模型可以考虑地层水蒸发,盐分沉淀,CO2-水-岩石地球化学反应以及储层孔隙度的变化。和CO2plume地热(CPG)系统中的渗透率。利用该模型,分析了地球化学反应,盐分沉降及其对地热开采的影响,并提出了减少液-岩相互作用对热采速率的影响的措施。模拟结果表明,重力和蒸发引起的气液毛细管负压力梯度会导致地层水流向注入器。地层水的回流会导致盐沉淀在注水井区域的积聚,这会导致严重的储层破坏,进而降低采热率。 CO 2-水-岩石地球化学反应可导致某些矿物的溶解和其他矿物的沉淀,但其对热采速率的最小影响可以忽略。但是,盐分的沉淀会通过影响CO2的流量和分布而影响地球化学反应,这可能使热采速率降低至原来的2/5。敏感性研究表明,储层条件会影响盐分的析出和热量的开采速度,因此,CPG应用应选择具有高温,高孔隙度,高渗透率,低盐度的沉积储层,并具有较高的注采压力差。可以在注入二氧化碳之前注入低盐度水,以及注入二氧化碳和水蒸气的组合注入,以减少CPG系统中的盐分沉淀并提高采热率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号