...
首页> 外文期刊>Applied Energy >Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor
【24h】

Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor

机译:通过流化床反应器的自热运行提高生物质快速热解的过程强度

获取原文
获取原文并翻译 | 示例
           

摘要

Heat transfer is the bottleneck to fast pyrolysis of biomass. Although the enthalpy for pyrolysis of biomass is relatively small operation at temperatures around 500 degrees C constrains heat carrier selection to inert gases and granular media that can sustain only modest thermal fluxes in practical pyrolysis systems. With heat transfer controlling the rate of pyrolysis, reactor capacity only scales as the square of reactor diameter and does not benefit from economies of scale in building larger reactors. We have eliminated this heat transfer bottleneck by replacing it with partial oxidation of pyrolysis products to provide the enthalpy for pyrolysis in a fluidized bed reactor, a process that can be described as autothermal pyrolysis. The oxygen-to-biomass equivalence ratio depends upon the kind of biomass being pyrolyzed and the level of parasitic heat losses from the reactor, but under conditions that simulate adiabatic operation, equivalence ratios are around 0.10, compared to 0.20 or higher for autothermal gasifiers. At this low equivalence ratio, there was no significant loss in bio-oil yield when operating the reactor autothermally (64.8 wt%) as compared to conventional pyrolysis (64.4 wt%). Carbon balances indicate that less valuable pyrolysis products (char and aqueous, bio-oil light ends) are consumed via partial oxidative reactions to provide the enthalpy for pyrolysis. While the carbon yields of char and bio-oil light ends decreased by 25.0% and 21.3%, respectively, the most valuable pyrolysis product (bio-oil heavy ends) only decreased 8.0%.
机译:传热是生物质快速热解的瓶颈。尽管用于生物质热解的焓在500摄氏度左右的温度下运行相对较小,但将热载体的选择限制在惰性气体和颗粒介质上,这些介质只能在实际热解系统中维持适度的热通量。通过传热控制热解速率,反应器容量仅按反应器直径的平方缩放,而不能受益于建造较大反应器的规模经济。我们通过用热解产物的部分氧化代替热传递瓶颈,从而消除了传热瓶颈,从而提供了在流化床反应器中进行热解的焓,该过程可称为自热热解。氧生物量当量比取决于热解生物质的种类和反应器的寄生热损失水平,但在模拟绝热运行的条件下,当量比约为0.10,而自热气化炉的当量比则为0.20或更高。在这种低当量比下,与常规热解(64.4 wt%)相比,当以自热方式运行反应器(64.8 wt%)时,生物油收率没有显着损失。碳平衡表明,通过部分氧化反应消耗的有价值的热解产物(焦炭和水溶液,生物油的轻馏分)消耗掉,从而为热解提供了焓。焦炭和生物油轻质馏分的碳产率分别降低了25.0%和21.3%,而最有价值的热解产物(生物油重质馏分)仅降低了8.0%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号