首页> 外文期刊>Applied Acoustics >Investigation on intensity of tones due to self-excited oscillation within the leading-edge slat cove at different incoming flow speeds
【24h】

Investigation on intensity of tones due to self-excited oscillation within the leading-edge slat cove at different incoming flow speeds

机译:在不同输入流速下前沿板条湾内自激振荡引起的音调强度研究

获取原文
获取原文并翻译 | 示例
           

摘要

To provide further understanding of the low to mid frequency tonal noise characteristics of the leading edge slat in the processes of take-off and landing, both experimental and numerical investigations are carried out on a two-dimensional high-lift configuration, with a stowed flap at varying incoming flow speeds (from 30 m/s to 60 m/s). The intensity variation of the low to mid frequency tonal noise is found to be closely related to the selection of the main mode of self-excited oscillation within the leading-edge slat cove. With increasing incoming flow speed, the main mode of the self-excited oscillation switches to a higher one. Meanwhile, the ratio of the self-excited oscillation period to the vortex shedding period is introduced to explain further the relationship between the main mode and incoming flow speed. As the incoming flow speed increases from 30 m/s to 60 m/s, the self-excited oscillation period is basically constant due to the flow similarity, whereas, the vortex shedding frequency is gradually increasing. The characteristic frequency of the shedding vortex near the cusp is found to be approximately proportional to 3/2 of the incoming flow speed power law. (C) 2019 Elsevier Ltd. All rights reserved.
机译:为了进一步了解起飞和着陆过程中前缘板条的低频到中频音调噪声特性,在二维高升力配置下,通过收起襟翼进行了实验和数值研究在不同的进入流速(从30 m / s到60 m / s)下。中低频音噪声的强度变化被发现与前沿板条湾内自激振荡主要模式的选择密切相关。随着进入流速的增加,自激振荡的主模式切换到更高的模式。同时,介绍了自激振荡周期与涡旋脱落周期的比值,以进一步解释主模和进入流速之间的关系。当进入的流速从30 m / s增加到60 m / s时,由于流动的相似性,自激振荡周期基本恒定,而涡旋脱落频率逐渐增加。发现靠近尖端的脱落涡旋的特征频率大约与输入流速幂律的3/2成正比。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Applied Acoustics》 |2019年第12期|232-239|共8页
  • 作者单位

    Beihang Univ, Minist Ind & Informat Technol, Key Lab Aeroacoust, Beijing 100191, Peoples R China|Beihang Univ, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China|Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China;

    Beihang Univ, Minist Ind & Informat Technol, Key Lab Aeroacoust, Beijing 100191, Peoples R China|Beihang Univ, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China|Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China;

    Beihang Univ, Minist Ind & Informat Technol, Key Lab Aeroacoust, Beijing 100191, Peoples R China|Beihang Univ, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China|Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China;

    Beihang Univ, Minist Ind & Informat Technol, Key Lab Aeroacoust, Beijing 100191, Peoples R China|Beihang Univ, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China|Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Leading-edge slat; Aerodynamic noise characteristics; Incoming flow speed; Tones; Intensity;

    机译:前沿板块;空气动力学噪声特性;流动速度;音调;强度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号