首页> 外文期刊>Annual Review of Materials Research >Recent Developments in Semiconductor Thermoelectric Physics and Materials
【24h】

Recent Developments in Semiconductor Thermoelectric Physics and Materials

机译:半导体热电物理与材料的最新发展

获取原文
获取原文并翻译 | 示例
           

摘要

Recent advances in semiconductor thermoelectric physics and materials are reviewed. A key requirement to improve the energy conversion efficiency is to increase the Seebeck coefficient (S) and the electrical conductivity (σ) while reducing the electronic and lattice contributions to thermal conductivity (k_e + k_l)- Some new physical concepts and nanostructures make it possible to modify the trade-offs between the bulk material properties through changes in the density of states, scattering rates, and interface effects on electron and phonon transport. We review recent experimental and theoretical results on nanostructured materials of various dimensions: superlattices, nanowires, nanodots, and solid-state thermionic power generation devices. Most of the recent success has been in the reduction of lattice thermal conductivity with the concurrent maintenance of good electrical conductivity. Several theoretical and experimental results to improve the thermoelectric power factor (S~2σ) and to reduce the Lorenz number (σ/K_e) are presented. We briefly describe recent developments in nonlinear thermoelectrics, as well as the generalization of the Bergman theorem for composite materials. Although the material thermoelectric figure of merit Z [ = S~2σ/(k_e + k_l)] is a key parameter to optimize, one has to consider the whole system in an energy conversion application. A rarely discussed but important efficiency/cost trade-off for thermoelectric power generation is briefly reviewed, and research directions for the development of low-cost thermoelectric materials are identified. Finally, we highlight the importance of the figure of merit, Z, beyond macroscale energy conversion applications in describing the microscopic coupling between charge and energy transport in materials.
机译:综述了半导体热电物理和材料的最新进展。提高能量转换效率的关键要求是增加塞贝克系数(S)和电导率(σ),同时减少电子和晶格对热导率的影响(k_e + k_1)-一些新的物理概念和纳米结构使其成为可能通过改变状态密度,散射速率以及界面对电子和声子传输的影响来改变块状材料特性之间的权衡。我们回顾了各种尺寸的纳米结构材料的最新实验和理论结果:超晶格,纳米线,纳米点和固态热电子发电设备。最近的大多数成功是在降低晶格热导率的同时保持良好的电导率。提出了一些改善热电功率因数(S〜2σ)和降低洛伦兹数(σ/ K_e)的理论和实验结果。我们简要描述了非线性热电学的最新发展以及复合材料的Bergman定理的推广。尽管材料热电品质因数Z [= S〜2σ/(k_e + k_l)]是要优化的关键参数,但在能量转换应用中必须考虑整个系统。简要回顾了很少讨论但重要的热电发电效率/成本折衷方案,并确定了开发低成本热电材料的研究方向。最后,我们强调了品质因数Z的重要性,它超出了宏观能量转换应用程序在描述材料中电荷与能量传输之间的微观耦合时的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号