...
首页> 外文期刊>Annual Reports on the progress of Chemistry,C >Particle-localized AC and DC manipulation and electrokinetics
【24h】

Particle-localized AC and DC manipulation and electrokinetics

机译:粒子局部AC和DC操作和电动学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Colloidal particles suspended in water respond to direct (DC) or alternatingncurrent (AC) fields in a variety of ways, including directional motion alongnor across the field direction, field-gradient dependent response and inducednparticle–particle interaction. We review here some of these effects and theirnapplications in new techniques for particle manipulation and assembly,nmaking of novel biomaterials and designing of new self-propelling microdevices.nThe coupling of the counterionic layer mobility, fluid flows and thenresulting particle motion are the basis not only of the classic electrophoreticneffects, but also of the recent developments in AC electrohydrodynamicsnand induced charge electrophoresis of asymmetric particles. We also discussnhow dielectrophoresis (particle interaction with external AC field gradients),ncould be used to manipulate and assemble objects on any size scale. Wendiscuss the interactions leading to the assembly of such structures, ways tonsimulate the dynamics of the process and the effect of particle size andnconductivity on the type of structure obtained. Finally, we demonstrate hownan additional level of complexity can be engineered to turn miniaturensemiconductor diodes into prototypes of self-propelling micromachinesnand micropumps. The diodes suspended in water propel themselvesnelectro-osmotically when a uniform alternating electric field is appliednacross the container. Semiconductor diodes embedded in channel wallsncould serve as distributed microfluidic pumps and mixers powered by anglobal external field.
机译:悬浮在水中的胶体颗粒以多种方式对直流(DC)或交流(AC)场做出响应,包括沿磁场方向或整个磁场方向的定向运动,取决于场梯度的响应以及诱发的粒子间相互作用。我们将在本文中回顾这些效应及其在粒子操纵和组装新技术,新型生物材料的制造以及新型自推进微器件的设计中的应用。n平衡离子层迁移率,流体流动以及导致粒子运动的耦合不仅是基础电泳的经典效果,以及不对称粒子的交流电流体动力学和感应电荷电泳的最新进展。我们还将讨论介电电泳(与外部交流场梯度的粒子相互作用)如何用于处理和组装任何尺寸的物体。 Wendiscus讨论了导致这种结构组装的相互作用,如何模拟过程动力学以及粒径和非导电性对所获得结构类型的影响的方法。最后,我们演示了如何设计更高程度的复杂性以将微型半导体二极管转变为自推式微机械和微型泵的原型。当在整个容器上施加均匀的交变电场时,悬浮在水中的二极管会以电声方式自我推动。嵌入在通道壁中的半导体二极管可以用作由全球外部场提供动力的分布式微流体泵和混合器。

著录项

  • 来源
    《Annual Reports on the progress of Chemistry,C》 |2009年第1期|p.213-246|共34页
  • 作者单位

    a Department of Chemical & Biomolecular Engineering, North Carolina State University,Raleigh, USA. E-mail: odvelev@ncsu.edu, Fax: +1-919-515-3465, Tel: +1-919-513-4318b Department of Chemical & Nuclear Engineering and Centre for Biomedical Engineering,University of New Mexico, Albuquerque, USA{ The HTML version of this article has been enhanced with colour images.,;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号