...
首页> 外文期刊>Annals of the New York Academy of Sciences >Double-Layer Thermocapillary Convection in a Differentially Heated Cavity
【24h】

Double-Layer Thermocapillary Convection in a Differentially Heated Cavity

机译:加热腔中的双层热毛细管对流

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Many materials-processing applications such as crystal growth from the melt involve thermocapillary flows that can affect the quality of the final product, particularly under microgravity conditions where the influence of buoyancy-driven convection is minimized. When the melt contains volatile components, as in the production of Ⅲ-Ⅴ semiconductor crystals, it is often encapsulated in a low-melting point amorphous molten glass phase such as boron oxide or pyrolytic boron nitride in order to prevent evaporation of the volatile components. The addition of the encapsulant layer and the melt-encapsulant interface in such cases can alter the thermocapillary flow in the melt. In this study, thermocapillary convection within a differentially heated rectangular cavity containing two immiscible liquid layers is considered in the absence of gravity. Domain mapping is used in conjunction with a finite difference scheme on a staggered grid to solve for the temperature and flow fields. The melt-encapsulant and the air-encapsulant interfaces are allowed to deform, with the contact lines pinned on the solid boundaries. The computed flow fields are compared to the corresponding results for a cavity with a rigid top surface. The presence of a free surface at the top leads to increased convection in the encapsulant phase while suppressing the thermocapillary flow in the melt phase. The flow pattern in the encapsulated layer is strongly dependent on the viscosity of the encapsulant layer. The intensity of the thermocapillary flow within the melt is significantly reduced as the viscosity of the encapsulant layer is increased. However, for a higher encapsulant viscosity, the retarding effect of the free top surface on thermocapillary convection in the melt is weakened.
机译:许多材料处理应用(例如从熔体中生长晶体)都涉及热毛细管流,这会影响最终产品的质量,尤其是在微重力条件下,其中浮力驱动对流的影响已降至最低。当熔体包含挥发性成分时,如在Ⅲ-Ⅴ型半导体晶体的生产中一样,通常将其封装在低熔点的非晶态熔融玻璃相中,例如氧化硼或热解氮化硼,以防止挥发性成分蒸发。在这种情况下,添加密封剂层和熔体-密封剂界面可以改变熔体中的热毛细管流动。在这项研究中,在没有重力的情况下,考虑了在包含两个不相溶的液体层的差热矩形腔内的热毛细管对流。域映射与交错网格上的有限差分方案结合使用来求解温度和流场。在接触线固定在固体边界上的情况下,允许熔融密封剂和空气密封剂界面变形。将计算出的流场与具有刚性顶面的空腔的相应结果进行比较。在顶部的自由表面的存在导致密封相中对流的增加,同时抑制了熔融相中的热毛细管流动。包封层中的流动模式在很大程度上取决于包封层的粘度。随着密封剂层粘度的增加,熔体中热毛细管流的强度显着降低。但是,对于较高的密封剂粘度,自由顶表面对熔体中热毛细管对流的阻滞作用减弱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号