首页> 外文期刊>Annals of nuclear energy >Numerical study of the stratification erosion benchmark for NPPs containment using CFD code GASFLOW-MPI
【24h】

Numerical study of the stratification erosion benchmark for NPPs containment using CFD code GASFLOW-MPI

机译:使用CFD码Gasflow-MPI对NPPS遏制分层腐蚀基准的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

During a severe accident involving a Nuclear Power Plant (NPP), a hydrogen-enriched stratification may occur in the dome of the containment. This is due to the gaseous density difference of a steam/hydrogen turbulent jet released from the break. This accident scenario is one of the high-ranking phenomena identified in the Phenomena Identification and Ranking Table (PIRT) for containment safety thermal hydraulics. In this work, the temporal evolution of the stratification erosion is analysed using the parallel CFD code GASFLOW-MPI with comparison to the experimental data from the THAI TH-20 benchmark, where helium is used as a hydrogen simulate. Identifying a suitable turbulence model is an important issue for a successful stratification erosion simulation due to turbulent mixing between the stratification and turbulent jet featured with the sharp velocity and density gradients. Three well-known turbulence models: 1. The classic k-epsilon model, 2. Large Eddy Simulation (LES) model and 3. Detached Eddy Simulation (DES) model are employed to evaluate their performances. Due to the negative buoyancy effect resulting from the light gas layer, the jet gradually loses its initial momentum and cannot penetrate the stratified layer in depth. The interaction Froude (Fr) number which is used to categorize the mixing mechanism is close to 1 in this work, indicating that the erosion process of the stratified layer is dominated by both the molecular diffusion and the momentum transport. The experimental data measured at different heights in THAI TH-20 benchmark, from the pure air region at the lower containment region up into the large helium concentration gradient region, and further up to high helium concentration region at the top of the containment. The calculated results show that the LES and DES turbulence models can capture time histories of helium concentration at all of the sensor points accurately, while the k-epsilon turbulence model predictions are always delayed due to its overestimating the turbulence mixing in the stratified layer. Moreover, compared with the k-epsilon model, more detailed turbulent eddy structure is resolved by the LES model and DES model, whose frequency satisfies the negative -5/3 energy decay rate for a wide region of frequency. Therefore, the LES and DES models are recommended for the stratification erosion simulation. This can provide guidance for nuclear engineers analysing hydrogen distribution phenomena during severe accidents. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在涉及核电厂(NPP)的严重事故中,富含氢气的分层可能发生在壳体的圆顶中。这是由于蒸汽/氢气湍流喷射从断裂中释放的气态密度差异。这种事故情景是用于遏制安全热液压的现象识别和排名桌(PIRT)中识别的高级现象之一。在这项工作中,使用并行CFD码Gasflow-MPI分析了分层腐蚀的时间演变,与来自泰铢的实验数据的比较,其中氦用作氢气模拟。识别合适的湍流模型是由于具有尖锐速度​​和密度梯度的分层和湍流射流之间的湍流而成功的分层腐蚀模拟的重要问题。三种着名的湍流模型:1。经典k-epsilon模型,2.大涡模拟(LES)模型和3.拆卸涡流模拟(DES)模型用于评估其性能。由于光气层产生的负浮力效果,射流逐渐失去其初始动量并且不能深入地穿透分层层。用于对混合机构进行分类的相互作用Froude(FR)数在该工作中接近1,表明分层层的腐蚀过程由分子扩散和动量运输主导。在泰国Th-20基准的不同高度下测量的实验数据,从下部容纳区域的纯空气区域到大的氦浓度梯度区域,进一步高达容纳顶部的高氦浓度区域。计算结果表明,LES和DES湍流模型可以精确地捕获在所有传感器点处的氦浓度的时间历史,而K-Epsilon湍流模型预测始终延迟,因为它高估了分层层中混合的湍流混合。此外,与K-Epsilon模型相比,通过LES模型和DES模型来解决更详细的湍流涡流结构,其频率满足频率宽区域的负-5/3能量衰减率。因此,建议LES和DES模型用于分层腐蚀模拟。这可以为核工程师分析严重事故期间分析氢气分布现象的指导。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号