...
首页> 外文期刊>Annals of nuclear energy >Preliminary investigation on the melting behavior of a freeze-valve for the Molten Salt Fast Reactor
【24h】

Preliminary investigation on the melting behavior of a freeze-valve for the Molten Salt Fast Reactor

机译:熔盐快堆冻结阀融化行为的初步研究

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the freeze-plug, a key safety component of the Molten Salt Fast Reactor, one of the Gen. IV nuclear reactors that must excel in safety, reliability, and sustainability. The freeze-plug is a valve made of frozen fuel salt, designed to melt when an event requiring the core drainage occurs. Melting and draining must be passive, relying on decay heat and gravity, and must occur before the reactor incurs structural damage. In this work, we preliminarily investigate the freeze-plug melting behavior, assessing the influence of various design configurations and parameters (e.g., sub-cooling, recess depth). We used COMSOL Multiphysics (R) to simulate melting, adopting an apparent heat capacity method. Results show that single-plug designs generally outperform multi-plug ones, where melting is inhibited by the formation of a frozen layer on top of the metal grate hosting the plugs. The layer thickness strongly depends on sub-cooling and recess depth. For multi-plug designs, the P/D ratio has a negligible influence on melting and can therefore be chosen to optimize the draining time. The absence of significant mixing in the pipe region above the plug leads to acceptable melting times (i.e., 1000 s) only for distances from the core up to 0.1 m, considered insufficient to host all the cooling equipment on the outside of the draining pipe and to protect the plug from possible large temperature oscillations in the core. Consequently, we conclude that the current freeze-plug design based only on decay heat to melt is likely to be unfeasible. A design improvement, preserving passivity and studied within the SAMOFAR project (http://samofar.eu/), consists in accelerating melting via heat stored in steel masses adjacent to the draining pipe. (C) 2019 The Author(s). Published by Elsevier Ltd.
机译:本文的重点是冻结插塞,这是熔盐快堆的关键安全组件,熔盐快堆是第四代核反应堆之一,必须在安全性,可靠性和可持续性方面出类拔萃。冷冻塞是一种由冷冻燃料盐制成的阀,设计用于在需要堆芯排空的事件时熔化。熔化和排放必须是被动的,依赖于衰减热和重力,并且必须在反应堆遭受结构性破坏之前发生。在这项工作中,我们初步研究了冻结塞的融化行为,评估了各种设计配置和参数(例如,过冷,凹陷深度)的影响。我们使用COMSOL Multiphysics(R)通过表观热容方法模拟融化。结果表明,单塞设计通常要优于多塞设计,单塞设计在容纳塞的金属炉排顶部形成冻结层,从而抑制了熔化。层的厚度在很大程度上取决于过冷和凹陷深度。对于多插头设计,P / D比对熔化的影响可以忽略不计,因此可以选择它来优化排放时间。塞子上方的管道区域中没有明显的混合,仅在距型芯最大距离为0.1 m的情况下,才导致可接受的熔化时间(即<1000 s),这被认为不足以将所有冷却设备容纳在排水管的外部并保护插头免受铁芯中可能出现的较大温度波动的影响。因此,我们得出的结论是,仅基于衰减热量融化的当前冻结塞设计可能是不可行的。在SAMOFAR项目(http://samofar.eu/)中进行了一项设计改进,以保持无源性,并通过存储在排水管附近的钢块中的热量来加速熔化。 (C)2019作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号