首页> 外文期刊>Annales Geophysicae >Cosmic ray cutoff prediction using magnetic field from global magnetosphere MHD simulations
【24h】

Cosmic ray cutoff prediction using magnetic field from global magnetosphere MHD simulations

机译:利用来自全球磁层MHD模拟的磁场预测宇宙射线

获取原文
获取原文并翻译 | 示例
       

摘要

Relativistic particles entering the Earth's magnetosphere, i.e. cosmic rays and solar energetic particles, are of prime space weather interest because they can affect satellite operations, communications, and the safety of astronauts and airline crews and passengers. In order to mitigate the hazards that originate from such particles one needs to predict the cutoff latitudes of such particles as a function of their energies and the state of the magnetosphere. We present results from a new particle tracing code that is used to determine the cutoff latitudes of 8-15 Me n~(-1) alpha particles during the 23/24 April, 1998 geomagnetic storm and the preceding quiet time. The calculations are based on four different geomagnetic field models and compared with SAMPEX observations of alpha particles in the same energy range. The geomagnetic field models under consideration are: (ⅰ) the International Geomagnetic Reference Field (IGRF) model, (ⅱ) the Tsyga-nenko "89" model (T89c), (ⅲ) the Tsyganenko "96" model (T96), and (ⅳ) a global magnetohydrodynamic (MHD) model of Earth's magnetosphere. Examining 11 SAMPEX cutoff latitude observations we find that the differences between the observed and the predicted cutoff latitudes are 2.3° ± 2.0° (mean) and 7.9° (maximum difference) for the IGRF model; 3.9°±2.4° (mean) and 6.9° (maximum difference) for the T89c model; 4.0° ± 1.4° (mean) and 5.5° (maximum difference) for the T96 model; and 2.5° ± 1.7° (mean) and 7.0° (maximum difference) for the MHD model. All models generally predict cutoff latitudes equatorward of the SAMPEX observations. The MHD model results also show steeper cutoff energy gradients with latitude compared to the empirical models and more structure in the cutoff energy versus latitude function, presumably due to the presence of boundary layers in the MHD model.
机译:进入地球磁层的相对论粒子,即宇宙射线和太阳高能粒子,是太空天气的主要兴趣所在,因为它们会影响卫星的运行,通信以及宇航员,航空人员和乘客的安全。为了减轻源自此类粒子的危害,需要根据其能量和磁层状态来预测此类粒子的截止纬度。我们提出了一个新的粒子追踪代码的结果,该代码用于确定1998年4月23/24日地磁风暴和之前的静默时间中8-15 Me n〜(-1)alpha粒子的截止纬度。计算基于四个不同的地磁场模型,并与相同能量范围内的α粒子的SAMPEX观测结果进行了比较。正在考虑的地磁场模型包括:(ⅰ)国际地磁场参考场(IGRF)模型,(ⅱ)齐格南科“ 89”模型(T89c),(ⅲ)齐甘科“ 96”模型(T96),以及(ⅳ)地球磁层的全球磁流体动力学(MHD)模型。检查11个SAMPEX截止纬度观测值,我们发现IGRF模型的观测截止纬度与预测截止纬度之间的差异为2.3°±2.0°(平均值)和7.9°(最大差异)。 T89c型号为3.9°±2.4°(平均)和6.9°(最大差); T96型号为4.0°±1.4°(平均)和5.5°(最大差); MHD模型为2.5°±1.7°(平均)和7.0°(最大差)。所有模型通常都预测SAMPEX观测值的赤道纬度为赤道。 MHD模型的结果还显示,与经验模型相比,纬度的截止能量梯度更陡,并且截止能量与纬度函数的结构更多,这可能是由于MHD模型中存在边界层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号