首页> 外文期刊>Annales Geophysicae >Evolution of the plasma sheet electron pitch angle distribution by whistler-mode chorus waves in non-dipole magnetic fields
【24h】

Evolution of the plasma sheet electron pitch angle distribution by whistler-mode chorus waves in non-dipole magnetic fields

机译:非偶极子磁场中惠斯勒合唱波对等离子电子俯仰角分布的演变

获取原文
获取原文并翻译 | 示例
       

摘要

We present a detailed numerical study on the effects of a non-dipole magnetic field on the Earth's plasma sheet electron distribution and its implication for diffuse auroral precipitation. Use of the modified bounce-averaged Fokker-Planck equation developed in the companion paper by Ni et al. (2012) for 2-D non-dipole magnetic fields suggests that we can adopt a numerical scheme similar to that used for a dipole field, but should evaluate bounce-averaged diffusion coefficients and bounce period related terms in non-dipole magnetic fields. Focusing on nightside whistler-mode chorus waves at L = 6, and using various Dungey magnetic models, we calculate and compare of the bounce-averaged diffusion coefficients in each case. Using the Alternative Direction Implicit (ADI) scheme to numerically solve the 2-D Fokker-Planck diffusion equation, we demonstrate that chorus driven resonant scattering causes plasma sheet electrons to be scattered much faster into loss cone in a non-dipole field than a dipole. The electrons subject to such scattering extends to lower energies and higher equatorial pitch angles when the southward interplanetary magnetic field (IMF) increases in the Dungey magnetic model. Furthermore, we find that changes in the diffusion coefficients are the dominant factor responsible for variations in the modeled temporal evolution of plasma sheet electron distribution. Our study demonstrates that the effects of realistic ambient magnetic fields need to be incorporated into both the evaluation of resonant diffusion coefficients and the calculation of Fokker-Planck diffusion equation to understand quantitatively the evolution of plasma sheet electron distribution and the occurrence of diffuse aurora, in particular at L > 5 during ge-omagnetically disturbed periods when the ambient magnetic field considerably deviates from a magnetic dipole.
机译:我们提供有关非偶极磁场对地球等离子薄片电子分布的影响及其对弥散极光降水的影响的详细数值研究。 Ni等人在随附论文中开发的修正的反弹平均Fokker-Planck方程的使用。 (2012年)对二维非偶极子磁场的研究表明,我们可以采用类似于偶极子场的数值方案,但应评估非偶极子磁场中的反弹平均扩散系数和与反弹周期相关的项。着眼于L = 6的夜场吹口哨合唱波,并使用各种Dungey磁模型,我们计算并比较了每种情况下的反弹平均扩散系数。使用交替方向隐式(ADI)方案对二维Fokker-Planck扩散方程进行数值求解,我们证明了合唱驱动的共振散射导致等离子薄片电子在非偶极场中比偶极子更快地散射到损耗锥中。当在Dungey磁模型中,向南行星际磁场(IMF)增大时,经受这种散射的电子将扩展到较低的能量和较高的赤道俯仰角。此外,我们发现扩散系数的变化是引起等离子薄层电子分布的时间演化模型变化的主要因素。我们的研究表明,必须将实际环境磁场的影响纳入共振扩散系数的评估和Fokker-Planck扩散方程的计算中,以定量地了解等离子体薄层电子分布的演变和扩散极光的发生。尤其是在地磁干扰期间,当环境磁场明显偏离磁偶极子时,在L> 5时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号