...
首页> 外文期刊>Analytical and Bioanalytical Chemistry >Improved voltage transfer coefficients for nonconductive materials in radiofrequency glow discharge optical emission spectrometry
【24h】

Improved voltage transfer coefficients for nonconductive materials in radiofrequency glow discharge optical emission spectrometry

机译:射频辉光放电光发射光谱法中非导电材料的改进的电压传递系数

获取原文
获取原文并翻译 | 示例
           

摘要

In radiofrequency glow discharge emission spectrometry (RF-GDOES), the excitation voltage used to create the plasma is applied to the back or front end of the sample to be analyzed. In this paper we focus on back-applied voltage systems (a configuration that represents about half of the instruments available on the market), and on applied voltage problems (the power coupling efficiency and materials analysis are beyond the scope of this study). In the RF-GDOES of nonconductive samples, a voltage drop develops inside the material. The voltage transfer coefficient is defined as the ratio between the peak voltage in front of the sample (facing the plasma) and the peak voltage applied to the back of the sample. In this work, we show that it is possible to increase the voltage transfer coefficient by increasing the capacitance of the sample. The capacitance of a given nonconductive material depends on its surface, its thickness and its permittivity. Increasing the voltage transfer coefficient permits higher power deposition in the plasma. This study is based on an electrical equivalent circuit for the discharge device, which takes into account the sample and reactor capacitances as well as the voltage probes used for the measurements. This circuit, when modeled by a commercial electrical circuit simulator, gives the voltage transfer coefficient as a function of the sample capacitance. Different approaches to increasing the sample capacitance and their influence on the voltage transfer coefficient are presented and related to the 750.4 nm argon line intensity, which is correlated to the electron density.
机译:在射频辉光放电发射光谱法(RF-GDOES)中,用于产生等离子体的激发电压被施加到要分析的样品的后端或前端。在本文中,我们关注于反向施加电压系统(大约代表市场上可用仪器的一半的配置),以及施加电压问题(功率耦合效率和材料分析不在本研究范围之内)。在非导电样品的RF-GDOES中,材料内部会产生电压降。电压传递系数定义为样品前面(面对等离子体)的峰值电压与施加到样品背面的峰值电压之比。在这项工作中,我们表明可以通过增加样品的电容来增加电压传递系数。给定的非导电材料的电容取决于其表面,厚度和介电常数。增加电压传输系数可以在等离子体中沉积更高的功率。这项研究基于放电设备的等效电路,该电路考虑了样品和反应堆的电容以及用于测量的电压探头。当通过商用电路仿真器对该电路进行建模时,该电路给出的电压传递系数是采样电容的函数。提出了增加样品电容的不同方法及其对电压传递系数的影响,这些方法与750.4 nm氩线强度有关,后者与电子密度有关。

著录项

  • 来源
    《Analytical and Bioanalytical Chemistry》 |2006年第1期|163-168|共6页
  • 作者单位

    Centre de Physique des Plasmas et Applications de Toulouse (UMR 5002) Université Paul Sabatier;

    Centre de Physique des Plasmas et Applications de Toulouse (UMR 5002) Université Paul Sabatier;

    Centre de Physique des Plasmas et Applications de Toulouse (UMR 5002) Université Paul Sabatier;

    Centre de Physique des Plasmas et Applications de Toulouse (UMR 5002) Université Paul Sabatier;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Radiofrequency; Glow discharge; Nonconductive materials;

    机译:射频;辉光放电;非导电材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号