首页> 外文期刊>Analytical and Bioanalytical Chemistry >Spectroscopic methods in gas hydrate research
【24h】

Spectroscopic methods in gas hydrate research

机译:天然气水合物研究中的光谱方法

获取原文
获取原文并翻译 | 示例
           

摘要

Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO2 storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3–20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas hydrates. This comprehensive review summarizes the importance of spectroscopic analytical techniques to our understanding of the structure and dynamics of gas hydrate systems, and highlights selected examples that illustrate the utility of these individual methods.
机译:天然气水合物是由被水笼包围的客体分子组成的晶体结构,由于其天然存在于深海和多年冻土地区而特别相关。可以在合适的温度和压力下将低分子量的分子(例如甲烷和二氧化碳)隔离到该笼中,以促进向固相的转变。尽管气体水合物的组成和结构似乎已广为人知,但它们的形成和离解机理以及与这些过程相关的动力学和动力学仍然不明确。为了利用天然气水合物作为能源(例如甲烷水合物),作为(例如)CO 2 储存中的螯合基质或用于化学能保存/储存的优势,需要更详细地说明需要从分子水平了解它们的形成和解离过程,以及影响这些过程的化学,物理和生物学参数。光谱技术似乎最适合分析气体水合物的结构(有时是原位),因此可以跨电磁波谱访问此类信息。气体水合物研究中目前使用了多种光谱学方法来确定水合物的组成,结构,笼占有率,客体分子位置以及结合/形成/解离机理。迄今为止,最常用的技术是拉曼光谱和固态核磁共振(NMR)光谱。使用中子和X射线衍射等衍射方法确定气体水合物的结构,并研究晶格扩展。此外,紫外可见光谱技术和扫描电子显微镜(SEM)有助于气体水合物的结构研究。最近,在3–20μm光谱范围内的波导耦合中红外光谱法已经证明了其在天然气水合物形成和分解中的价值。这篇全面的综述总结了光谱分析技术对我们理解天然气水合物系统的结构和动力学的重要性,并重点介绍了一些示例,这些示例说明了这些方法的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号