...
首页> 外文期刊>American Mineralogist >Amorphous materials: Properties, structure, and durability: Quantification of the kinetics of iron oxidation in silicate melts using Raman spectroscopy and assessment of the role of oxygen diffusion
【24h】

Amorphous materials: Properties, structure, and durability: Quantification of the kinetics of iron oxidation in silicate melts using Raman spectroscopy and assessment of the role of oxygen diffusion

机译:非晶态材料:性能,结构和耐久性:使用拉曼光谱法定量分析硅酸盐熔体中铁的氧化动力学,并评估氧扩散的作用

获取原文
获取原文并翻译 | 示例
           

摘要

A diopside composition silicate glass containing 8 wt% Fe2O3 was prepared from melt equilibrated at 1500 °C and different redox conditions in the range logfO2 = –0.7 (air) to logfO2 = –6. The Fe2+/FeT was measured using Mössbauer spectroscopy. The Mössbauer data were used to calibrate Raman-scattering intensity variations of the same samples as a function of oxidation state, providing a simple empirical method to determine the redox ratio of this glass. This new Micro-Raman-based method has been used to quantify redox profiles across partially oxidized samples. No significant Fe2+/FeT gradients were found (values were constant from the surface to the center), although the average oxidation state was observed to increase as a function of time. The former result contrasts with O self-diffusion profiles measured with the ion microprobe on diopside glasses prepared at similar experimental conditions, for which strong isotopic gradients were found at the sample scale (corresponding to a self-diffusion coefficient for O at 1450 °C of 1 x 10–11 m2/s). Local oxidation of Fe in the melt therefore appears to occur independently of long-range diffusion of O from the sample surface. A mechanism capable of explaining this observation is proposed based upon the fact that redox gradients result in the generation of electromotive forces. This results in a powerful driving force to wipe out redox gradients through fast electron transfer. However, migration of electrons alone would result in unfavorable charge gradients, in particular at the surface of the sample. At the temperature of our experiments, the local mobility of O is apparently sufficient to compensate the migration of electrons. Despite rapid charge transfer, the bulk oxidation state of our sample is nevertheless limited by the addition of external O. The time dependence of the bulk oxidation state of our samples can be modeled by a constant rate of O diffusion across the interface of 2.1 10–7 m/s. However, the bulk oxidation state of the liquid is also found to be concordant with variations calculated assuming that diffusion of O is the rate-limiting mechanism. This apparent paradox may be explained if the characteristic time-scales of O self-diffusion in the sample volume and of O incorporation at the sample surface are similar. We suggest that this is indeed the case, given that both of these processes are likely to be limited by the frequency of bond-breaking and bond-forming events in the liquid.
机译:由在1500°C和不同的平衡的熔体制备了含有8 wt%Fe 2 O 3 的透辉石成分硅酸盐玻璃。 sup>氧化还原条件,范围为logf O 2 = – 0.7(空气)至logf O 2 = –6。使用Mössbauer光谱法测量Fe 2 + / Fe T 使用Mössbauer数据校准拉曼散射 相同样品的强度变化随氧化 状态的变化,为确定该玻璃的 氧化还原比提供了一种简单的经验方法。这种基于Micro-Raman的新方法 已用于量化部分氧化 样品中的氧化还原曲线。尽管 sup> 2 + / Fe T 的梯度从表面到中心都没有发现,但没有发现明显的Fe 2 + / Fe T 梯度。观察到/ sup>平均氧化态随时间 的增加而增加。前一个结果与在类似实验条件下用离子微探针在制备的透辉石玻璃上测量的O自扩散谱 形成对比,在相同的实验条件下,该同位素具有很强的同位素 梯度在样本规模上被发现(对应于1450°C下O的a 自扩散系数1 x 10 –11 m 2 / s)。因此,熔体中Fe的局部氧化似乎 发生,而与O从样品 表面的远距离扩散无关。基于氧化还原梯度在电动势的产生中导致 的事实,提出了一种能够解释这种观察结果的机制。这将产生 强大的驱动力,可通过快速的 电子转移消除氧化还原梯度。但是,单独的电子迁移会导致不利的电荷梯度,特别是在样品的 表面。在我们的实验温度下, 的O的局部迁移率显然足以补偿 电子的迁移。尽管电荷快速转移,但我们样品的 整体氧化状态仍然受到 外部O的限制。体积 氧化的时间依赖性样品的状态可以通过O跨2.1 10 –7 m / s的界面的恒定 速率建模。 还发现液体的本体氧化态 与假设O的扩散 是限速机制而计算出的变化一致。如果样品体积中O自我扩散 和样品表面O掺入的特征时间尺度 ,则可以解释这种明显的悖论。相似。我们建议确实如此,因为 这两个过程都可能受到液体中键断裂和键形成事件的 频率的限制。

著录项

  • 来源
    《American Mineralogist》 |2008年第12期|1749-1759|共11页
  • 作者单位

    Laboratoire de Structure et Propriétés de l’Etat Solide, CNRS UMR 8008, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq, France|Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road N.W., Washington, D.C. 20015, U.S.A.;

    DTP, CNRS-UMR 5562, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France;

    Physique des Minéraux et Magmas, CNRS-IPGP, 4 Place Jussieu, 75252 Paris Cedex 05, France;

    Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road N.W., Washington, D.C. 20015, U.S.A.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号