首页> 外文期刊>American Mineralogist >Shear viscosity and diffusion in liquid MgSiO3: Transport properties and implications for terrestrial planet magma oceans
【24h】

Shear viscosity and diffusion in liquid MgSiO3: Transport properties and implications for terrestrial planet magma oceans

机译:液态MgSiO3中的剪切黏度和扩散:传输特性及其对陆地行星岩浆海洋的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Molecular dynamics simulations using a pair-wise additive potential are implemented to investigate self-diffusion (Mg, Si, and O) and shear viscosity of liquid MgSiO3 in the density-temperature-pressure range 2350–5300 kg/m3, 2500–5000 K, and 0–140 GPa, respectively. Self-diffusivity and shear viscosity are described by modified Arrhenian expressions, which feature a pressure-dependent activation volume. Activation energies for self-diffusion (Mg, Si, and O) and viscous flow are 99.6, 109.3, 97.4, and 95.3 kJ/mol, respectively; evidently oxygen mobility dominates liquid dynamics. Activation volumes for self-diffusion and shear viscosity at low (2–5 GPa) pressure are ~1 cm3/mol with self-diffusion decreasing and shear viscosity increasing as pressure increases although there is a small interval near zero pressure within which diffusivity increases slightly with increasing pressure. Shear viscosity increases by a factor of 75 along the 3000 K isotherm from the top of the mantle to the core-mantle boundary. Along the 3000 K isentrope relevant to terrestrial magma ocean convection, shear viscosity increases by about a factor of three. The equivalence conditions between the Stokes-Einstein and Eyring transport models are derived. The Eyring model provides information on the size of the activated complex associated with viscous flow across the range in pressures relevant to the Earth’s mantle and suggests that the number of atoms in the activated complex associated with shear flow decreases from ~8 atoms at low pressure to ~4 atoms at high pressure at 4500 K.
机译:进行了使用成对加成电位 的分子动力学模拟,以研究液态MgSiO 3 <的自扩散(Mg,Si和O) 和剪切粘度。 / sub>的密度-温度-压力 范围2350–5300 kg / m 3 ,2500–5000 K和0–140 GPa , 分别。自扩散系数和剪切粘度通过修改后的阿伦尼表达式来描述,其特征是依赖于压力的激活体积。 自扩散的活化能(Mg,Si和O)和粘性流分别为99.6、109.3, 97.4和95.3 kJ / mol。显然,氧迁移率 主导了液体动力学。自扩散的激活量 和低压(2–5 GPa)下的剪切粘度为〜1 cm 3 / mol 尽管在 零压力附近有一小段时间,但扩散率随 的增加而略有增加,但随着压力的增加而降低,并且剪切粘度增加 。从地幔顶部到 芯-幔边界,剪切粘度沿3000 K等温线增加了 75倍。沿着与 陆地岩浆海洋对流有关的3000 K熵,剪切粘度将 增大大约三倍。推导了 Stokes-Einstein模型与Eyring输运模型之间的等价条件。 Eyring模型提供了有关与之关联的已激活 络合物大小的信息。粘性流在与地球地幔有关的压力 范围内,并表明与剪切流 相关的活化复合物中原子的数量 从低压下约8个原子,高压下在4500 K下约4个原子。

著录项

  • 来源
    《American Mineralogist》 |2009年第7期|975-980|共6页
  • 作者单位

    Department of Earth Science, University of California, Santa Barbara, California 93106, U.S.A.;

    Department of Earth Science, University of California, Santa Barbara, California 93106, U.S.A.;

    OFM Research-West, 7336 24th Avenue NE, Seattle, Washington 98115, U.S.A.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号