...
首页> 外文期刊>American Mineralogist >Effective radii of noble gas atoms in silicates from first-principles molecular simulation
【24h】

Effective radii of noble gas atoms in silicates from first-principles molecular simulation

机译:通过第一性原理分子模拟得出硅酸盐中稀有气体原子的有效半径

获取原文
获取原文并翻译 | 示例

摘要

An understanding of how noble gas atoms are dissolved in mantle minerals and melts is necessary to infer geological information from the constraints provided by noble gas geochemistry. For this purpose, first-principles molecular simulations are carried out on liquid and crystalline (stishovite) silica systems with dissolved noble gas atoms (He, Ne, Ar, Kr, and Xe). The first principles nature of the simulations, which do not involve empirical force field parameters, enables the determination of the effective radii and structural environments of the noble gas atoms. The noble gas atoms are shown to be highly compressible, so that their effective radii depend strongly on the molar volume of the system (which in turn depends on pressure). Due to the continuous nature of interatomic forces, the effective radii also depend on the extent to which the surrounding atoms can relax in response to the presence of the noble gas atom. In this regard, different definitions of effective radii are relevant in different situations: "equilibrium radii" that correspond to the optimal interatomic distances at the molar volume of the system, and "repulsive wall" radii that correspond to the interatomic distances where the interatomic potentials of mean force change from attractive to repulsive at that molar volume. The equilibrium radii determine the interatomic distances in a melt, and the repulsive wall radii determine the interatomic distances for interstitial sites in a crystal. Based on these effective radii, the structural environment surrounding the noble gas atoms at high pressure is shown to correspond to a close packing of O atoms around the central noble gas atom. Compression of the noble gas atoms is shown to correspond closely to the compression of the porosity within the silicate melt structure.
机译:从稀有气体地球化学提供的约束条件推断地质信息 时,必须了解稀有气体原子如何溶解在地幔矿物中。为此目的,第一原理分子模拟是在具有溶解惰性气体的 的液态和结晶(水辉石)二氧化硅体系上进行的[sup> 。 Ne,Ar,Kr和Xe)。模拟的第一个 原理性质不涉及经验性的 力场参数,可以确定有效的 半径和结构环境。稀有气体原子。显示 稀有气体原子具有高度可压缩性,因此 的有效半径在很大程度上取决于系统的摩尔体积(反过来,取决于压力)。由于原子间力的连续 性质,有效半径还取决于 周围原子响应存在而可以放松的程度。稀有气体原子。在这方面,有效半径的不同 定义在不同情况下是相关的: “平衡半径”对应于在磨牙处的最佳原子间 距离系统的体积和与原子间距离相对应的“排斥 壁”半径,其中 平均力的原子间势从吸引力 变为排斥在那个摩尔体积。平衡半径确定 熔体中的原子间距离,而排斥壁 半径确定晶体中间隙位置 的原子间距离。基于这些有效半径,高压下围绕稀有气体原子的结构 环境显示为与 周围的O原子紧密堆积相对应中心稀有气体原子。稀有气体原子 的压缩与硅酸盐熔体结构中孔隙度 的压缩非常接近。

著录项

  • 来源
    《American Mineralogist 》 |2009年第4期| 600-608| 共9页
  • 作者单位

    Department of Geological Sciences, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A.|Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A.;

    Department of Geological Sciences, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A.;

    Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号