...
首页> 外文期刊>American Chemical Society, Division of Fuel Chemistry, Preprints >KINETIC STUDY OF COAL AND BIOMASS CO-PYROLYSIS USING THERMOGRAVIMETRY
【24h】

KINETIC STUDY OF COAL AND BIOMASS CO-PYROLYSIS USING THERMOGRAVIMETRY

机译:热重分析法研究煤和生物质的热解动力学

获取原文
获取原文并翻译 | 示例
           

摘要

The major driving force for adding biomass in coal utilization is to utilize renewable energy resources and reduce net coal CO2 emission. Co-firing (blend of biomass with coal combusted in air) as a co-utilization technology has been successfully demonstrated in numerous power plants and has shown reduction of CO2 emission1. A life cycle (LC) analysis concluded that co-firing of Illinois No. 6 coal and forest residue (10% heat) reduces the LC greenhouse gas (GHG) emission by 6.6%2. Simulation tools that can be used to predict behaviors of coal and biomass blends in co-utilization and to optimize system designs and operation are a potentially cost effective way to assist further technology development. Kinetic models are needed for blends of coal and biomass for devolatilization/pyrolysis, gasification and combustion processes. Thermogravimetry (TGA) has been widely used to obtain kinetics parameters of solid fuel thermal processes using non-isothermal methods at one or multiple heating rates3. Biomass mainly consists of hemicelluloses, cellulose, and lignin and it has different composition with coal. Biomass pyrolysis kinetic models are mainly developed based on the mechanism of three independent parallel first order reactions of three pseudo-components4. Iso-conversional and multi-heating rate methods are widely used in solid thermal decomposition kinetics study3. Using the methods on the co-pyrolysis is challenging due to inherent heterogeneity of both biomass and coal, and to the complexity of co-pyrolysis of these blends. The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data.
机译:在煤炭利用中增加生物量的主要动力是利用可再生能源,减少煤炭净二氧化碳排放量。作为一种联合利用技术,共燃(生物质与空气中燃烧的煤炭的混合物)作为一种联合利用技术已在许多发电厂中得到了成功证明,并显示出二氧化碳排放量的减少1。生命周期(LC)分析得出的结论是,伊利诺伊州6号煤与森林残渣的共烧(热量为10%)使LC温室气体(GHG)排放降低了6.6%2。可以用来预测煤和生物质混合物在联合利用中的行为并优化系统设计和运行的仿真工具,是协助进一步技术开发的潜在经济有效方式。煤和生物质混合物的挥发,热解,气化和燃烧过程需要动力学模型。热重法(TGA)已被广泛用于使用非等温方法以一种或多种加热速率获得固体燃料热过程的动力学参数3。生物质主要由半纤维素,纤维素和木质素组成,与煤的组成不同。生物质热解动力学模型主要是基于三个假组分的三个独立的平行一级反应的机理而建立的。在固体热分解动力学研究中,等温转换和多重加热速率方法被广泛使用。由于生物质和煤炭固有的异质性,以及这些混合物的共热解的复杂性,在共热解中使用这些方法具有挑战性。这项研究的目的是研究煤和生物质混合物在惰性气体环境下在低升温速率下的热行为,并使用基于TGA实验数据的模型拟合技术建立简化的动力学模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号