...
首页> 外文期刊>Aircraft Engineering and Aerospace Technology >Robust flutter analysis and control of a wing
【24h】

Robust flutter analysis and control of a wing

机译:机翼的稳健颤振分析和控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose - The purpose of this paper is to present a novel approach in aeroservoelastic analysis and robust control of a wing section with two control surfaces in leading-edge and trailing-edge. The method demonstrates how the number of model uncertainties can affect the flutter margin. Design/methodology/approach - The proposed method effectively incorporates the structural model of a wing section with two degrees of freedom of pitch and plunge with two control surfaces on trailing and leading edges. A quasi-steady aerodynamics assumption is made for the aerodynamic modeling. Basically, perturbations are considered for the dynamic pressure models and uncertainty parameters are associated with structural stiffness and structural damping and are accounted for in the model by a Linear Fractional Transformation (LFT) model. The control commands are applied to a first and second order electro-mechanical actuator. Findings - Dynamic performance of aeroelastic/aeroservoelastic system including time responses, system modal specifications, critical flutter speeds, and stability margins are extracted and compared with each other. Simulation results are validated through experiments and are compared to other existing methods available to the authors. Results of simulations with four structural uncertainties and first order controllers have a good agreement with experimental test results. Furthermore, it is shown that by using a high gain second order controller, the aeroservoelastic (ASE) system does not have any coupling nature in frequency response. Originality/value - In this study, modeling, simulation, and robust control of a wing section have been investigated utilizing the /i-Analysis method and the wing flutter phenomenon is predicted in the presence of multiple uncertainties. The proposed approach is an advanced method compared to conventional flutter analysis methods (such as V-g or p-k) for calculating stability margin of aeroelastic/aeroservoelastic systems.
机译:目的-本文的目的是提出一种航空气动弹性分析的新方法,以及在前缘和后缘具有两个控制面的机翼部分的鲁棒控制。该方法演示了模型不确定性的数量如何影响抖动裕量。设计/方法/方法-所提出的方法有效地结合了具有两个俯仰和俯仰自由度的机翼部分的结构模型,在后缘和前缘具有两个控制面。对空气动力学模型进行了准稳态空气动力学假设。基本上,动压模型要考虑扰动,不确定性参数与结构刚度和结构阻尼相关,并在模型中由线性分数变换(LFT)模型解决。控制命令被施加到一阶和二阶机电致动器。研究结果-提取并比较了气动弹性/气动弹性系统的动态性能,包括时间响应,系统模态规格,临界振颤速度和稳定性裕度。仿真结果通过实验进行了验证,并与作者可以使用的其他现有方法进行了比较。具有四个结构不确定性和一阶控制器的仿真结果与实验测试结果具有很好的一致性。此外,示出了通过使用高增益二阶控制器,航空弹性(ASE)系统在频率响应中不具有任何耦合特性。原创性/价值-在这项研究中,已经使用/ i-Analysis方法研究了机翼截面的建模,仿真和鲁棒控制,并且在存在多个不确定性的情况下预测了机翼颤动现象。与传统的颤振分析方法(例如V-g或p-k)相比,该方法是一种用于计算气动/气动弹性系统稳定性极限的先进方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号