...
首页> 外文期刊>Aircraft engineering >Artificial neural networks to predict aerodynamic coefficients of transport airplanes
【24h】

Artificial neural networks to predict aerodynamic coefficients of transport airplanes

机译:人工神经网络预测运输飞机的空气动力系数

获取原文
获取原文并翻译 | 示例

摘要

Purpose - Multidisciplinary design frameworks elaborated for aeronautical applications require considerable computational power that grows enormously with the utilization of higher fidelity tools to model aeronautical disciplines like aerodynamics, loads, flight dynamics, performance, structural analysis and others. Surrogate models are a good alternative to address properly and elegantly this issue. With regard to this issue, the purpose of this paper is the design and application of an artificial neural network to predict aerodynamic coefficients of transport airplanes. The neural network must be fed with calculations from computational fluid dynamic codes. The artificial neural network system that was then developed can predict lift and drag coefficients for wing-fuselage configurations with high accuracy. The input parameters for the neural network are the wing planform, airfoil geometry and flight condition. An aerodynamic database consisting of approximately 100,000 cases calculated with a full-potential code with computation of viscous effects was used for the neural network training, which is carried out with the back-propagation algorithm, the scaled gradient algorithm and the Nguyen-Wridow weight initialization. Networks with different numbers of neurons were evaluated to minimize the regression error. The neural network featuring the lowest regression error is able to reduce the computation time of the aerodynamic coefficients 4,000 times when compared with the computing time required by the full potential code. Regarding the drag coefficient, the average error of the neural network is of five drag counts only. The computation of the gradients of the neural network outputs in a scalable manner is possible by an adaptation of back-propagation algorithm. This enabled its use in an adjoint method, elaborated by the authors and used for an airplane optimization task. The results from that optimization were compared with similar tasks performed by calling the full potential code in another optimization application. The resulting geometry obtained with the aerodynamic coefficient predicted by the neural network is practically the same of that designed directly by the call of the full potential code.
机译:目的-为航空应用精心设计的多学科设计框架需要相当大的计算能力,而随着使用更高保真度的工具对航空学科(如空气动力学,载荷,飞行动力学,性能,结构分析等)进行建模,其计算能力将大大提高。代理模型是正确而优雅地解决此问题的一个不错的选择。关于这个问题,本文的目的是设计和应用人工神经网络来预测运输飞机的空气动力系数。必须向神经网络提供来自计算流体动力学代码的计算结果。随后开发的人工神经网络系统可以高精度地预测机翼机身配置的升力和阻力系数。神经网络的输入参数是机翼平面,机翼几何形状和飞行条件。一个神经网络训练使用了一个空气动力学数据库,该数据库由大约100,000个用全能代码计算并计算粘性效应的案例组成,并通过反向传播算法,比例梯度算法和Nguyen-Wridow权重初始化进行了训练。 。对具有不同数量神经元的网络进行了评估,以最大程度地减少回归误差。与全部潜在代码所需的计算时间相比,具有最低回归误差的神经网络能够将空气动力学系数的计算时间减少4000倍。关于阻力系数,神经网络的平均误差仅为五个阻力计数。通过调整反向传播算法,可以以可扩展的方式计算神经网络输出的梯度。这使它可以在作者精心设计的辅助方法中使用,并用于飞机优化任务。将优化的结果与通过在另一个优化应用程序中调用完整的潜在代码执行的类似任务进行比较。用神经网络预测的空气动力学系数获得的最终几何形状实际上与直接通过调用全部潜在代码而设计的几何形状相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号