首页> 外文期刊>AIAA Journal >Adjoint Sensitivity Formulation for Discontinuous Galerkin Discretizations in Unsteady Inviscid Flow Problems
【24h】

Adjoint Sensitivity Formulation for Discontinuous Galerkin Discretizations in Unsteady Inviscid Flow Problems

机译:非定常无粘性流问题中非连续Galerkin离散化的伴随灵敏度公式

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents an unsteady discrete adjoint algorithm for high-order implicit discontinuous Galerkinndiscretizations in time-dependent inviscid flow problems. Themajor function of the adjoint approach is to obtain thensensitivity information in a time-dependent functional output, which in turn is used to drive an unsteady shape-noptimization process to deliver a minimum of the objective functional. A gradient-based optimization strategy isninvestigated, in which the sensitivity derivatives of the objective functional with respect to input variables arenformulated in the context of high-order discontinuousGalerkin discretizations, while special emphasis is given to thenvariations and linearizations of curvilinear boundary elements. Implicit temporal discretizations consisting of ansecond-order backward Euler scheme and a fourth-order implicit Runge–Kutta scheme are considered exclusivelynin this work, where the corresponding adjoint problem is required to be solved in a backward time-integrationnmanner due to the associated transpose operation.Two numerical examples for the unsteady shape design techniquesnare presented to verify the derived sensitivity formulations and to demonstrate the performance of the adjointnapproach; the first involves an inverse shape-optimization case bymatching a time-dependent target pressure profilenfor a two-dimensional periodic vortical gust impinging on aRAE-2822 airfoil, and the second considersminimizationnof the acoustic noise produced by subsonic flow over a NACA0012 airfoil with a 0:03c thick blunt trailing edge.
机译:本文针对时间相关的无粘性流问题,提出了一种用于高阶隐式不连续Galerkinn离散化的非稳态离散伴随算法。伴随方法的主要功能是在随时间变化的功能输出中获取灵敏度信息,然后将其用于驱动不稳定的形状优化过程以提供最少的目标功能。没有研究基于梯度的优化策略,其中在高阶不连续Galerkin离散化的背景下,对目标函数相对于输入变量的敏感性导数进行了计算,同时特别强调了曲线边界元素的变化和线性化。由二阶后向Euler方案和四阶隐式Runge-Kutta方案组成的隐式时间离散化仅在本工作中考虑,由于相关的转置运算,需要在后向时间积分中解决相应的伴随问题。给出了两个非稳态形状设计技术的数值例子,以验证导出的灵敏度公式并证明伴随方法的性能。第一个涉及逆形状优化的情况,通过匹配与二维周期性周期性阵风撞击aRAE-2822机翼的时间相关的目标压力曲线,第二个考虑了将音速为0的NACA0012机翼上的亚音速流产生的声噪声最小化: 03c钝钝后缘。

著录项

  • 来源
    《AIAA Journal》 |2010年第12期|p.2867-2883|共17页
  • 作者

    Li Wang;

  • 作者单位

    University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号