首页> 外文期刊>AIAA Journal >Flame Stabilization in Small Cavities
【24h】

Flame Stabilization in Small Cavities

机译:小腔中的火焰稳定

获取原文
获取原文并翻译 | 示例
           

摘要

This research is motivated by the necessity to improve the performance of ultracompact combustors, whichnrequires flame stabilization in small cavities. An extensive computational investigation on the characteristics ofncavity-stabilized flames is presented. A high-fidelity, time-accurate, implicit algorithm that uses a global chemicalnmechanism for JP8-air combustion and includes detailed thermodynamic and transport properties as well asnradiation effects is used for simulation. Calculations are performed using both direct numerical simulation andnstandard k-" Reynolds-averaged Navier–Stokes model. The flow unsteadiness is first examined in large axi-nsymmetric and small planar cavities with nonreactive flows. As with previous investigations on axisymmetricncavities,multiple flowregimeswere obtained by varying cavity length (x=Do):wake backflowregime, unsteady cavitynvortex regime, steady cavity vortex regime, and compressed cavity vortex regime. However, planar cavities onlynexhibit steady cavity vortex and compressed cavity vortex regimes. Two opposed nonaligned air jets were positionednin this planar cavity: the outermost air jet in coflowwith themainstreamflow(i.e., normal injection). The fuel jet wasninjected either in coflow, crossflow, or counterflow with respect to the mainstream flow. Flow unsteadiness wasnobserved to be relatively small for coflow- and crossflow-fuel-jet injection. By reversing the air jet positionsn(i.e., reverse injection), the flow unsteadiness is promoted regardless of fuel jet positioning. Finally, the effect ofncombustion and cavity equivalence ratio (u0001CAV)on flame unsteadiness is addressed.With normal injection (reverseninjection), low and high u0001CAV leads to low (high) and high (low) flame unsteadiness, respectively. Based on thesenresults recommendations are provided to designers/engineers to reduce flame unsteadiness in these cavities.
机译:这项研究的动机是必须改善超紧凑型燃烧器的性能,而超小型燃烧器则要求在小腔室内保持火焰稳定。提出了对模腔稳定火焰特性的广泛计算研究。一种高精确度,时间精确的隐式算法用于仿真,该算法使用全局化学机制进行JP8空气燃烧,并包含详细的热力学和传输特性以及辐射效应。使用直接数值模拟和标准的k“-雷诺平均Navier-Stokes模型进行计算。首先在具有非反应性流动的大轴非对称和小平面空腔中检查流体的不稳定性。与先前对轴对称腔的研究一样,通过多个流态获得了变化的腔体长度(x = Do):唤醒后流状态,不稳定的腔体涡流状态,稳定的腔体涡流状态和压缩的腔体涡流状态,但是,平面腔仅阻碍稳定的腔体涡流和压缩的腔体涡流状态,在该平面中放置了两个相对的不对齐的空气喷嘴腔室:与主流气流相通的最外面的空气射流(即正常喷射),相对于主流流,无论是在气流,横流还是逆流中都喷射了燃料射流,对于流动和横流燃料来说,流动的不稳定性相对较小。通过反转喷气位置n(即反向喷射),流量不稳定不论燃油喷嘴的位置如何,都会被提升。最后,研究了燃烧和腔当量比(u0001CAV)对火焰不稳定的影响。通过正常注入(反向注入),低和高u0001CAV分别导致低(高)和高(低)火焰不稳定。根据结果​​,向设计者/工程师提供了建议,以减少这些型腔中的火焰不稳定。

著录项

  • 来源
    《AIAA Journal》 |2010年第1期|p.224-235|共12页
  • 作者

    Alejandro M. Briones;

  • 作者单位

    University of Dayton Research Institute, Dayton, Ohio 45469;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号